Terahertz radiation converter based on metamaterial
https://doi.org/10.17073/1609-3577-2023-1-56-65
EDN: YVACGI
Abstract
Since the early 1980s, the terahertz range (from 0.1 to 10 THz) attracts constant attention of both fundamental and applied physics. Due to its unique properties, terahertz radiation finds it’s applications in spectroscopy, defectoscopy, and security systems. The construction of efficient absorbers and converters in terahertz range is crucial for further development of terahertz technologies. In this work, we use a frequency-selective high-Q metamaterial to construct a converter of terahertz radiation into the infrared radiation. The converter consists of a metamaterial absorber of terahertz radiation covered with a micrometer thick layer of graphite, which emits in the infrared range the energy absorbed by the metamaterial. We have made a numerical electrodynamic and associated thermal simulation of the radiation converter. The metamaterial simulation at 96 GHz (low opacity window of the atmosphere) shows the electromagnetic radiation absorption coefficient of 99.998%, and the analytically calculated converter efficiency of 93.8%. Concluding the above our terahertz radiation converter may contribute to security systems and defectoscopy setups.
Keywords
About the Authors
A. V. SablukRussian Federation
4-1 Leninsky Ave., Moscow 119049
Andrey V. Sabluk — Postgraduate Student, Department of Theoretical Physics and Quantum Technologies, Engineer of the Scientific Project of the Laboratory “Superconducting Metamaterials”
A. A. Basharin
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Alexey A. Basharin — Cand. Sci. (Eng.), Associate Professor, Department of Theoretical Physics and Quantum Technologies, Senior Researcher, Laboratory of Superconducting Metamaterials
References
1. Kulchitsky N.A., Naumov A.V., Startsev V.V., Demyanenko M.A. Detection in the terahertz range. Part 1. Photonics Russia. 2021; 15(1): 52—69. (In Russ.). https://doi.org/10.22184/1993-7296.FRos.2021.15.1.52.68
2. Song H.D., Nagatsuma T., eds. Handbook of terahertz technologies: devices and applications. 1st ed. NY, USA: Jenny Stanford Publishing; 2015. 612 p. https://doi.org/10.1201/b18381
3. Peiponen K.E., Zeitler J.A., Kuwata-Gonokami M., eds. Terahertz spectroscopy and imaging. Berlin, Heidelberg: Springer-Verlag; 2013. 644 p. https://doi.org/10.1007/978-3-642-29564-5
4. Usanov D.D., Romanova N.V., Saldina D.D. Prospects and trends in the development of terahertz technologies: patent landscape. The Economics of Science. 2017; 3(3): 189—202. https://doi.org/10.22394/2410-132X-2017-3-3-189-202
5. Akhmanov A.S., Angeluts A.A., Balakin A.V., Nazarov M.M., Ozheredov I.A., Sapozhnikov D.A., Sokolov V.I., Khaidukov E.V., Shkurinov A.P., Panchenko V.Ya. Terahertz optoelectronics and its applications. Moscow: Interkontakt Nauka; 2014. 785 p. (In Russ.)
6. Zimdars D., White J., Stuck G., Sucha G., Fichter G., Williamson S.L. Time domain terahertz imaging of threats in luggage and personnel. International Journal of High Speed Electronics and Systems. 2007; 17(2): 271—287. https://doi.org/10.1142/S0129156407004497
7. Carranza I.E., Grant J., Gough J., Cumming D.R.S. Metamaterial-based terahertz imaging. IEEE Transactions on Terahertz Science and Technology. 2015; 5(6): 892—901. https://doi.org/10.1109/TTHZ.2015.2463673
8. Liu D., Gaucher B., Pfeiffer U., Grzyb J., eds. Advanced millimeter-wave technologies: antennas, packaging and circuits. John Wiley & Sons, Ltd; 2009. 769 p. https://doi.org/10.1002/9780470742969
9. Sakai K., ed. Terahertz optoelectronics Springer Berlin, Heidelberg; 2005. 389 p. https://doi.org/10.1007/b80319
10. Ali A., Mitra A., Aïssa B. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials. 2022; 12(6): 1027—1059. https://doi.org/10.3390/nano12061027
11. Pendry J.B. Negative refraction makes a perfect lens. Physical Review Letters. 2000; 85(18): 3966—3969. https://doi.org/10.1103/PhysRevLett.85.3966
12. 12 Fedotov V.A., Rose M., Prosvirnin S.L., Papasimakis N., Zheludev N.I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters. 2007; 99(14): 147401—147406. https://doi.org/10.1103/PhysRevLett.99.147401
13. Al-Badri K. Very high Q-factor based on G-shaped resonator type metamaterial absorber. Ibn AL-Haitham Journal for Pure and Applied Science. 2017 (IHSCICONF). 2018: 160—168. https://doi.org/10.30526/2017.IHSCICONF.1788
14. Savinov V., Fedotov V.A., Anlage S.M., de Groot P.A.J., Zheludev N.I. Modulating sub-THz radiation with current in superconducting metamaterial. Physical Review Letters. 2012; 109(24): 243904—243909. https://doi.org/10.1103/PhysRevLett.109.243904
15. Al-Naib I., Yang Y., Dignam M.M., Zhang W., Singh R. Ultra-high Q even eigenmode resonance in terahertz metamaterials. Applied Physics Letters. 2015; 106(1): 011102—011109. https://doi.org/10.1063/1.4905478
16. Vahala K.J. Optical microcavities. Nature. 2003; 424(6950): 839—846. https://doi.org/10.1038/nature01939
17. Savinov V., Tsiatmas A., Buckingham A.R., Fedotov V.A., de Groot P.A.J., Zheludev N.I. Flux exclusion superconducting quantum metamaterial. Scientific Reports. 2012; 2(1): 450—456. https://doi.org/10.1038/srep00450
18. Liu D., Yan Y. Investigations on a dual-frequency operation terahertz gyrotron. In: OSA Technical Digest (online). The 8th Inter. symp. on ultrafast phenomena and terahertz waves. Chongqing, China. October 10–12, 2016. Washington, DC, USA: Optica Publishing Group; 2016. https://doi.org/10.1364/ISUPTW.2016.IW2A.4
19. Savinov V., Fedotov V.A., Anlage S.M., de Groot P.A.J., Zheludev N.I. Modulating sub-THz radiation with current in superconducting metamaterial. Physical Review Letters. 2012; 109(24): 243904—243909. https://doi.org/10.1103/PhysRevLett.109.243904
20. Chen H., Padilla W.J., Zide O., Gossard A.C., Taylor A.J., Averitt R.D. Active terahertz metamaterial devices. Nature. 2006; 444: 597—600. https://doi.org/10.1038/nature05343
21. Srivastava Y.K., Manjappa M., Cong L., Krishnamoorthy H.N.S., Savinov V., Pitchappa P., Singh R. A superconducting dual-channel photonic switch. Advanced Materials. 2018; 30(29): e1801257. https://doi.org/1010.1002/adma.201801257
22. Srivastava Y.K., Manjappa M., Krishnamoorthy N.S., Singh R. Accessing the high-Q dark plasmonic fano resonances in superconductor metasurfaces. Advanced Optical Materials. 2016; 4(11): 1875—1881. https://doi.org/10.1002/adom.201600354
23. Wang Y., Han Z., Du Y., Qin J. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics. 2021; 10(4): 1295—1307. https://doi.org/10.1515/nanoph-2020-0582
24. Strikwerda A., Tao H., Kadlec E.A., Fan K., Padilla W., Zhang X., Shaner E.A., Averitt R. Metamaterial based terahertz detector. In: OSA Technical Digest (online). Conf. on lasers and electro-optics 2011 (CLEO 2011). May 1–6, 2011. Baltimore, MD, USA. Washington, DC, USA: Optica Publishing Group; 2011. https://doi.org/10.1364/QELS.2011.QTuD6
25. Feldman Y., Puzenko A., Ishai P.B., Caduff A., Agranat A.J. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range. Physical Review Letters. 2008; 100(12): 128102—128107. https://doi.org/10.1103/PhysRevLett.100.128102
26. Park G.-S., Kim Y.H., Han H., Han J.K., Ahn J., Son J.-H., Park W.-Y., Jeong Y.U., eds. Convergence of terahertz sciences in biomedical systems. Springer Dordrecht; 2012. 435 p.
27. Alves F., Pimental L., Grbovic D., Karunasiri G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Scientific Reports. 2018; 8(1): 12466—12480. https://doi.org/10.1038/s41598-018-30858-z
28. Bilgin H., Zahertar S., Sadeghzadeh S., Yalcinkaya A.D., Torun H. A MEMS-based terahertz detector with metamaterialbased absorber and optical interferometric readout. Sensors and Actuators A: Physical. 2016; 244: 292—298. https://doi.org/10.1016/j.sna.2016.04.021
29. Landy N.I., Sajuyigbe S., Mock J.J., Smith D.R., Padilla W.J. Perfect metamaterial absorber. Physical Review Letters. 2008; 100(20): 207402—207409. https://doi.org/10.1103/PhysRevLett.100.207402
30. Askerzade I. Physical properties of unconventional superconductors. In: Unconventional superconductors. Springer series in materials science. Berlin, Heidelberg: Springer; 2012. Vol. 153. P. 1—26. https://doi.org/10.1007/978-3-642-22652-6_1
31. Tao H., Bingham C.M., Strikwerda A.C., Pilon D., Shrekenhamer D., Landy N.I., Fan K., Zhang X., Padilla W.J., Averitt R.D. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Physical Review B. Condensed Matter. 2008; 78: 241103 (R). https://doi.org/10.1103/PHYSREVB.78.241103
32. Munk B.A. Frequency selective surfaces: Theory and design. Wiley; 2000. 440 p.
33. Kas’yanov A.O., Obukhovets V.A. Frequency-selective surfaces. Main Applications. Radioengineering. 2005; (9(100)): 4—12. (In Russ.)
34. Voytsehovskiy A.V., Nesmelov S.N., Kulchitskiy N.A., Melnikov A.A., Maltsev P.P. Detection in terahertz range. Nano- and Microsystems Technology. 2012; (2(139)): 28—35. (In Russ.)
35. Pocket practical guide to thermography. Testo AG; 2018. 56 p. (In Russ.). URL: https://domikelectrica.ru/wp-content/uploads/2018/11/Testo_Prakticheskoe_rukovodstvo_po_termografii.pdf
36. Hao Y., Mittra R. FDTD modeling of metamaterials: Theory and applications. Boston; London: Artech House Publishers; 2009. 33 p.
37. Adamchuk Yu.O., Boguslavskii Yu.O., Boguslavskii L.Z., Sinchuk A.V. Deposition of carbon nanostructured coatings on metal surfaces by electric discharge method in a hydrocarbon medium. Elektronnaya obrabotka materialov = Electronic Processing of Materials. 2017; 53(6): 1—7. (In Russ.). https://doi.org/10.5281/zenodo.1051302
38. Mayanov E.P., Elizarov P.G., Beilina N.Yu., Bubnenkov I.A., Kolesnikov S.A., Protsenko A.N., Firsova T.D., eds. The research institute of structural materials based on graphite is 55 years old. Мoscow: Nauchnye tekhnologii; 2015. 246 p. (In Russ.)
39. Brazhe R.A., Kochaev A.I., Meftakhutdinov R.M. Graphenes and their physical properties. Ulyanovsk: UlGTU; 2016. 139 p. (In Russ.)
Review
For citations:
Sabluk A.V., Basharin A.A. Terahertz radiation converter based on metamaterial. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(1):56-65. (In Russ.) https://doi.org/10.17073/1609-3577-2023-1-56-65. EDN: YVACGI