Correct determination of electron concentration in n–GaSb from Hall data
https://doi.org/10.17073/1609-3577-2023-1-36-45
EDN: BPAYDK
Abstract
The calculation of conductivity electron concentrations in n-GaSb at T = 295 K and T = 77 K have been made. The concentration of “heavy” electrons in the L-valley of conduction band at Т = 295 K has been shown to exceed “light” electron one in the Γ-valley. On the contrary, at T = 77 K the conductivity electrons are gathered in the Γ-valley.
The results of Hall measurements made on tellurium-doped samples of n-GaSb obtained by the Czochralski method have been represented. It has been shown that upon analysing Hall data at Т = 295 K, it is necessary to take into account the presence of two types of electrons (“light” and “heavy”); their concentrations are not possible to be determined. Seeming increase in electron concentration upon transition from T = 295 K to 77 K really does not take place. The electron concentration at T = 77 K may be determined correctly from the Hall data.
About the Authors
Yu. N. ParkhomenkoRussian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant
A. G. Belov
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Aleksandr G. Belov — Cand. Sci. (Phys.–Math.), Leading Re-searcher
E. V. Molodtsova
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524
Elena V. Molodtsova — Cand. Sci. (Eng.), Leading Researcher
R. Yu. Kozlov
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Roman Yu. Kozlov — Head of the Laboratory
S. S. Kormilitsina
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Svetlana S. Kormilitsina — Junior Researcher
E. O. Zhuravlev
Russian Federation
2-1 Elektrodnaya Str., Moscow 111524;
4-1 Leninsky Ave., Moscow 119049
Evgeny O. Zhuravlev — Trainee Student
References
1. Белогорохов А.И., Белов А.Г., Петрович П.Л., Рашевская Е.П. Определение концентрации свободных носителей заряда в Pb1-xSnxTe c учетом затухания плазменных колебаний. Оптика и спектроскопия. 1987; 63(6): 1293–1296.
2. Белогорохов А.И., Белогорохова Л.И., Белов А.Г., Рашевская Е.П. Плазменный резонанс свободных носителей заряда и оценка некоторых параметров зонной структуры материала CdxHg1-xTe. Физика и техника полупроводников. 1991; 25(7): 1196–1203. https://journals.ioffe.ru/articles/23491
3. Югова Т.Г., Белов А.Г., Каневский В.Е., Кладова Е.И., Князев С.Н., Парфентьева И.Б. Сравнение результатов оптических и электрофизических измерений концентрации свободных электронов в образцах n-InAs. Известия высших учебных заведений. Материалы электронной техники. 2021; 24(3): 153–161. https://doi.org/10.17073/1609-3577-2021-3-153-161
4. Yugova T.G., Belov A.G., Kanevskii V.E., Kladova E.I., Knyasev S.N., Parfent'eva I.B. Comparison between results of optical and electrical measurements of free electron concentration in n-InAs specimens. Modern Electronic Materials. 2021; 7(3): 79–84. https://doi.org/10.3897/j.moem.7.3.76700
5. Zwerdling S., Lax B., Button K.J., Roth L.M. Oscillatory magneto-absorption in gallium antimonide JA-1149. Journal of Physics and Chemistry of Solids. 1959; 9(3-4): 320–324.
6. Sagar A. Experimental investigation of conduction band of GaSb. Physical Review Journals Archive. 1960; 117(1): 93–100. https: //doi.org/10.1103/PhysRev.117.93
7. Strauss A.J. Electrical properties of n-type GaSb. Physical Review Journals Archive. 1961; 121(4): 1087–1090. https://doi.org/10.1103/PhysRev.121.1087
8. Sun R.-Y., Becker W.M. Band inversion and transport properties of L minima in n-GaSb(Te). Physical Review B. 1974; 10: 3436–3450. https://doi.org/10.1103/PhysRevB.10.3436
9. Kourkoutas C.D., Bekris P.D., Papaioannou G.J., Euthymiou P.C. Transport parameters of n-type GaSb. Solid State Communications. 1984; 49(11): 1071–1075. https://doi.org/10.1016/0038-1098(84)90426-5
10. Johnson G.R., Cavenett B.C., Kerr T.M., Kirby P.B., Wood C.E.C. Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy. Semiconductor Science and Technology. 1988; 3(12): 1157–1165. https://doi.org/10.1088/0268-1242/3/12/002
11. Lee M.E., Poole I., Truscott W.S., Cleverly I.R., Rohlfing D.M. A detailed Hall-effect analysis of sulfur-doped gallium antimonide grown by molecular-beam epitaxy. Journal of Applied Physics. 1990; 68(1): 131–137. https://doi.org/10.1063/1.347098
12. Chin V.W.L. Electron mobility in GaSb. Solid-State Electronics. 1995; 38(1): 59–67. https://doi.org/10.1016/0038-1101(94)E0063-K
13. Dmitriev A.P., Mikhailova M.P., Yassievich I.N. Impact ionization in AIIIBV semiconductors in high electric fields. Physica Status Solidi (b). 1987; 140: 9–37. https://doi.org/10.1002/PSSB.2221400102
14. Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. М.: МИСиС; 2003. 480 с.
15. Maslar J.E., Hurst W.S., Wang C.A. Spectroscopic determination of electron concentration in n-type GaAs. Journal of Applied Physics. 2008; 104(10): 103521–103527. https://doi.org/10.1063/1.3021159
16. Mitchel W.C., Elhamri S., Haugan H.J., Berney R., Sin Mou, Brown G.J. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors. AIP Advances. 2015; 5(9): 097219. https://doi.org/10.1063/1.4932208
17. Curran A., Gity F., Gocalinska A., Mura E., Nagle R.E., Schmidt M., Sheehan B., Pelucchi E., O'Dwyer C., Hurley P.K. High hole mobility polycrystalline GaSb thin films. Crystals. 2021; 11(11): 1348–1357. https://doi.org/10.3390/cryst11111348
18. Dutta P.S., Bhat H.L., Kumar V. The physics and technology of gallium antimonide: An emerging optoelectronic material. Journal of Applied Physics. 1997; 81(9): 5821–5870. https://doi.org/10.1063/1.36535610.1063/1.365356
19. Vurgaftman I., Meyer J.R., Ram-Mohan L.R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics. 2001; 89(11): 5815–5875. https://doi.org/10.1063/1.1368156
20. Куницын А.Е., Мильвидская А.Г., Мильвидский М.Г, Чалдышев В.В. Свойства легированных теллуром монокристаллов антимонида галлия, выращенных из нестехиометрического расплава. Физика и техника полупроводников. 1997; 31(8): 947–949.
21. Хвостиков В.П., Сорокина С.В., Потапович Н.С., Хвостикова О.А., Власов А.С, Ракова Е.П., Андреев В.М. Физика и техника полупроводников. 2008; 42(10): 1198–1205.
22. New semiconductor materials. Biology systems. Characteristics and properties. Band structure and carrier concentration of gallium antimonide (GaSb). https://www.ioffe.ru/SVA/NSM/Semicond/GaSb/bandstr.html (дата обращения: 20.03.2022).
23. Kane E.O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids. 1957;1(4):249–261. https://doi.org/10.1016/0022-3697 (57)90013-6
24. Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe, PbS; под ред. Л.С. Стильбанса. М.: Наука; 1968. 384 с.
25. Маделунг О. Физика полупроводниковых соединений элементов III-V групп; пер. с англ. М.: Мир; 1967. 480 с.
26. Глазов В.М., Глаголева Н.Н., Грязева Н.Л. Концентрационная зависимость числа носителей заряда при простом и сложном легировании антимонида галлия и ее взаимосвязь с пределом растворимости. Физика и техника полупроводников. 1976; 10(5): 882–888.
27. Harland H.B., Woolley J.C. Conduction band of GaSb. Canadian Journal of Physics. 1966; 44(11): 2715–2728. https://doi.org/10.1139/p66-221
28. Becker W.M., Ramdas A.K., Fan H.Y. Energy band structure of gallium antimonide. Journal of Applied Physics. 1961; 32(10): 2094–2102. https://doi.org/10.1063/1.1777023
29. Wolf H.F. Semiconductors. NY, USA: Wiley-Interscience; 1971. 552 p.
30. Sharma A.C., Ravindra N.M., Auluck S., Srivastava V.K. Temperature-dependent effective masses in III-V compound semiconductors. Physica Status Solidi (b). 1983; 120(2): 715–721. https://doi.org/10.1002/pssb.2221200231
Review
For citations:
Parkhomenko Yu.N., Belov A.G., Molodtsova E.V., Kozlov R.Yu., Kormilitsina S.S., Zhuravlev E.O. Correct determination of electron concentration in n–GaSb from Hall data. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(1):36-45. (In Russ.) https://doi.org/10.17073/1609-3577-2023-1-36-45. EDN: BPAYDK