Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Effect of vacuum sintering conditions on the properties of Y3Al5O12 : Ce luminescent ceramics

https://doi.org/10.17073/1609-3577-2022-4-312-322

EDN: QQPCIJ

Abstract

The aim of this work was to study the effect of vacuum sintering conditions and cerium concentration on the optical, luminescent and thermal properties of yttrium-aluminum garnet based ceramics doped with Се3+ cations. Series of ceramic powders were synthesized and samples of luminescent ceramics having the composition Y3-хСехAl5O12 were synthesized where x was in the range 0.01 to 0.025 f.u. We show that the phase composition and grain size distribution of the ceramic powders do not depend on cerium concentration. Without sintering additives, an increase in vacuum sintering temperature from 1675 to 1800 °C leads to an increase in the optical transmittance of luminescent ceramic specimens from 5 to 55% at a 540 nm wavelength and an increase in the thermal conductivity of the samples from 8.4 to 9.5 W/(m ∙ K). It was found that an increase in cerium concentration leads to a shift of the luminescent band peak from 535 to 545 nm where as the width of the luminescent band decreases with an increase in vacuum sintering temperature from 1675 to 1725 °C.

About the Authors

L. V. Tarala
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Lyudmila V. Tarala — Researcher of the Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



A. A. Kravtsov
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Alexander A. Kravtsov — Cand. Sci. (Eng.), Head of the Nanopowder Synthesis Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



O. M. Chapura
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Oleg M. Chapura — Research Engineer at the Research Laboratory of Technology of Thin Films and Nanoheterostructures of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



V. A. Tarala
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Vitaly A. Tarala — Cand. Sci. (Chem.), Head of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



D. S. Vakalov
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Dmitry S. Vakalov — Cand. Sci. (Phys.-Math.), Head of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



F. F. Malyavin
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Fedor F. Malyavin — Head of Ceramics Sintering Sector of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Kazan Federal University
Russian Federation

38 Vavilov Str., Moscow 119991;

18 Kremlyovskaya Str., Kazan 420008

Sergey V. Kuznetsov — Cand. Sci. (Chem.), Leading Researcher of Laboratory of Nanomaterials for Photonics



V. A. Lapin
North Caucasian Federal University
Russian Federation

1 Pushkin Str., Stavropol 355017

Viacheslav A. Lapin — Cand. Sci (Eng.), Senior Researcher of the Sector of Physical and Chemical Methods of Research and Analysis of the Research Laboratory of Technology of Advanced Materials and Laser Media of the Scientific Laboratory Complex of Clean Rooms, Faculty of Physics and Technology



L. V. Kozhitov
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Lev V. Kozhitov — Dr. Sci. (Eng.), Professor of the Department of Technology of Electronics Materials



A. V. Popkova
JSC “Research Institute NPO” LUCH”
Russian Federation

24 Zheleznodorozhnaya Str., Podolsk 142103

Alena V. Popkova — Senior Researcher



References

1. Fujii T., Gao Y., Sharma R., Hu E.L., Denbaars S., Nakamura S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters. 2004;84(6):855—857. https://doi.org/10.1063/1.1645992

2. Narukawa Y., Ichikawa M., Sanga D., Sano M., Mukai T. White light emitting diodes with super-high luminous efficacy. Journal of Physics D: Applied Physics. 2010; 43(35):354002—354003. https://doi.org/10.1088/0022-3727/43/35/354002

3. Reiter W.L., Stengl G. A blue light emitting diode used as a reference element in scintillation spectrometers. Nuclear Instruments and Methods. 1981; 180(1): 105—107.

4. Feezell D.F., Speck J., Denbaars S., Nakamura Sh. Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. Journal of Display Technology. 2013; 9(4): 190—198. https://doi.org/10.1109/JDT.2012.2227682

5. Nakamura S. The roles of structural imperfections in InGaN-based blue light- emitting diodes and laser diodes. Science. 1998; 281(5379): 956—961. https://doi.org/10.1126/science.281.5379.956

6. Ahmad S., Raushan M.A., Siddiqui M.J. Achievements and perspectives of GaN based light emitting diodes: A critical review. Proc. 2017 Inter. conf. on trends in electronics and informatics (ICEI). May 11—12, 2017. SCAD College of Engineering and Technology, Tirunelveli, TamilNadu, India; 2017. P. 224—229. https://doi.org/10.1109/ICOEI.2017.8300921

7. Guo F., Yuan R., Yang Y.L., Zhang Z.J., Zhao J.T., Lin H. An effective heat dissipation strategy improving efficiency and thermal stability of phosphor-in-glass for high-power WLEDs. Ceramics International. 2022; 48(9): 13185—13192. https://doi.org/10.1016/j.ceramint.2022.01.195

8. Yao Q., Zhang L., Zhang J., Jiang Zh., Sun B., Shao C., Ma Y., Zhou T., Wang K., Zhang L., Chen H., Wang Y. Simple mass-preparation and enhanced thermal performance of Ce: YAG transparent ceramics for high power white LEDs. Ceramics International. 2019; 45(5): 6356—6362. https://doi.org/10.1016/j.ceramint.2018.12.121

9. Liu Y., Su H., Lu Z., Shen Zh., Guo Y., Zhao D., Li Sh., Zhang J., Liu L., Fu H. Energy transfer and thermal stability enhancement in Ce/Cr co-doped Al2O3/YAG eutectic phosphor ceramics for broadband red-emission. Ceramics International. 2022; 48(16): 23598—23608. https://doi.org/10.1016/j.ceramint.2022.05.008

10. Nishiura S., Tanabe S., Fujioka K., Fujimoto Y. Properties of transparent Ce:YAG ceramic phosphors for white LED. Optical Materials. 2011; 33(5): 688—691. https://doi.org/10.1016/j.optmat.2010.06.005

11. Yang C.-C., Chang C.-L., Huang K.-Ch., Taishan L. The yellow ring measurement for the phosphor-converted white LED. Physics Procedia. 2011;19:182—187. https://doi.org/10.1016/j.phpro.2011.06.146

12. Nishiura S., Tanabe S., Fujioka K., Fujimoto Y. Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED. IOP Conference Series: Materials Science and Engineering. 2009; 1(1): 012031—012036. https://doi.org/10.1088/1757-8981/1/1/012031

13. Kwon S.B., Choi S.H., Yoo J.H., Jeong S.G., Song Y.-H., Yoon D.H. Synthesis design of Y3Al5O12: Ce3+ phosphor for fabrication of ceramic converter in automotive application. Optical Materials (Amsterdam). 2018; 80: 265—270. https://doi.org/10.1016/j.optmat.2018.04.037

14. Zhu Q.-Q., Li Sh., Yuan Q., Zhang H., Wang L. Transparent YAG:Ce ceramic with designed low light scattering for high-power blue LED and LD applications. Journal of the European Ceramic Society. 2021; 41(1): 735—740. https://doi.org/10.1016/j.jeurceramsoc.2020.09.006

15. Nakamura H., Shinozaki K., Okumura T., Nomura K. Massive red shift of Ce3+ in Y3Al5O12 incorporating super-high content of Ce. RSC Advances. 2020; 10(21): 12535—12546. https://doi.org/10.1039/D0RA01381A

16. Nikova M., Tarala V., Malyavin F.F., Vakalov D., Lapin V.A., Kuleshov D.S., Kravtsov Al., Chikulina I., Tarala L.V., Evtushenko E.A., Medyanik E.V., Krandievsky S.O., Bogach A.V., Kuznetsov S.V. The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International. 2021; 47(2): 1772—1784. https://doi.org/10.1016/j.ceramint.2020.09.003

17. Kravtsov A., Chikulina I., Tarala V., Vakalov D., Nikova M., Malyavin F.F., Krandievsky S.O., Blinov A., Lapin V.A. Nucleation and growth of YAG: Yb crystallites: A step towards the dispersity control. Ceramics International. 2020; 46(18): 28585—28593. https://doi.org/10.1016/j.ceramint.2020.08.016

18. Kravtsov A.A., Chikulina I., Tarala V.A., Evtushenko E.A., Nikova M., Tarala V., Malyavin F.F., Vakalov D., Lapin V.A., Kuleshov D.S. Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by two-stage precipitation with the use of hexamine. Ceramics International. 2019; 45(1): 1273—1282. https://doi.org/10.1016/j.ceramint.2018.10.010

19. Tarala V.A., Nikova M., Kuznetsov S.V., Chikulina I., Kravtsov Al., Vakalov D., Krandievsky S.O., Malyavin F.F., Ambartsumov M., Kozhitov L.V., Mitrofanenko L.M. Synthesis of YSAG:Er ceramics and the study of the scandium impact in the dodecahedral and octahedral garnet sites on the Er3+ energy structure. Journal of Luminescence. 2022; 241: 118539—118543. https://doi.org/10.1016/j.jlumin.2021.118539

20. Liu Q., Liu J., Li J., Ivanov M.G., Medvedev A., Zeng Y., Jin G., Ba X., Liu W., Jiang B., Pan Y., Guo J. Solid-state reactive sintering of YAG transparent ceramics for optical applications. Journal of Alloys and Compounds. 2014; 616: 81—88. https://doi.org/10.1016/j.jallcom.2014.06.013

21. Zhang L., Yao Q., Yuan Z., Jiang Zh., Gu L., Sun B., Shao C., Zhou T., Bu W., Wang Y., Chen H. Ammonium citrate assisted surface modification and gel casting of YAG transparent ceramics. Ceramics International. 2018; 44(17): 21921—21927. https://doi.org/10.1016/j.ceramint.2018.08.304

22. Ramírez-Rico J., Singh M., Zhu D., Martínez Fernández J. High-temperature thermal conductivity of biomorphic SiC/Si ceramics. Journal of Materials Science. 2017; 52(17): 10038—10046. https://doi.org/10.1007/s10853-017-1199-y

23. Abd H.R., Hassan Z., Alrawi N., Omar A.F., Thahab S.M., Lau Kh.Sh. Rapid synthesis of Ce3+:YAG via CO2 laser irradiation combustion method: Influence of Ce doping and thickness of phosphor ceramic on the performance of a white LED device. Journal of Solid State Chemistry. 2021; 294(3): 121866—121877. https://doi.org/10.1016/j.jssc.2020.121866

24. Zhang L., Lu Zh., Zhu J., Yang H., Han P., Chen Y., Zhang Q. Citrate sol-gel combustion preparation and photoluminescence properties of YAG:Ce phosphors. Journal of Rare Earths. 2012; 30(4): 289—296. https://doi.org/10.1016/S1002-0721(12)60040-4

25. Kravtsov A.A., Chikulina I.S., Vakalov D.S., Chapura O.M., Krandievskii S.O., DevitskiiO.V., Lapin V.A. Luminescence of YAG:Ce doped with silver nanoparticles. In: Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. Tver: Izdatel’stvo Tverskogo gosudarstvennogo universiteta; 2021. Iss. 13. P. 220—227. (In Russ.). https://doi.org/110.26456/pcascnn/2021.13.220

26. Lukyashin K.E., Ishchenko A.V., Shitov V., Shevelev V., Victorov L.V. Effect of the sintering aids on optical and luminescence properties of Ce:YAG ceramics. IOP Conference Series: Materials Science and Engineering. 2019; 525: 012035—012046. https://doi.org/10.1088/1757-899X/525/1/012035

27. Abd H.R., Hassan Z., Alrawi N., Almessiere M.A., Omar A.F., Alsultany F.H., Sabah F.A., Osman U.Sh. Effect of annealing time of YAG:Ce3+ phosphor on white light chromaticity values. Journal of Electronic Materials. 2018; 47(2): 1638—1646. https://doi.org/10.1007/s11664-017-5968-9

28. Wagner A., Ratzker B., Kalabukhov S., Frage N. Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening. Journal of Luminescence. 2019; 213: 454—458. https://doi.org/10.1016/j.jlumin.2019.05.058


Supplementary files

Review

For citations:


Tarala L.V., Kravtsov A.A., Chapura O.M., Tarala V.A., Vakalov D.S., Malyavin F.F., Kuznetsov S.V., Lapin V.A., Kozhitov L.V., Popkova A.V. Effect of vacuum sintering conditions on the properties of Y3Al5O12 : Ce luminescent ceramics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(4):312-322. (In Russ.) https://doi.org/10.17073/1609-3577-2022-4-312-322. EDN: QQPCIJ

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)