Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Studies of the interaction of modified nitro group boronitride nanotubes with gas-phase carbon-containing molecules to create sensor devices

https://doi.org/10.17073/1609-3577-2022-4-261-270

EDN: DDKFWU

Abstract

Recently, the environmental situation in the world has been deteriorating everywhere and there is a need to find new effective means of detecting harmful substances in the air. Every year, the content of carbon dioxide in the air is growing, which in the end can lead to a deterioration in the health of people. Various types of sensor devices are currently used to timely fix the increase in the gas level. As the active material of such a sensor, modern unique materials can be used – nanotubes, which, due to their sorption properties, are able to detect the presence of harmful impurities in the air space of the premises. It is also possible to use such sensors as detectors of some human diseases by analyzing exhaled air, which makes their use in medicine possible. The results of a theoretical study of the sorption interaction of modified boronitride nanotubes with molecules of carbon dioxide and acetone, obtained using the quantum-chemical DFT method, are presented, which prove the possibility of using this type of nanotubes as a sensor material for sensor devices.

About the Authors

N. P. Boroznina
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Natalya P. Boroznina — Dr. Sci. (Phys.-Math.), Professor, Department of Forensic Science and Physical Materials Science



I. V. Zaporotskova
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies



P. A. Zaporotskov
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Pavel A. Zaporotskov — Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Forensic Science and Physical Materials Science



L. V. Kozhitov
National University of Science and Technology MISiS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Lev V. Kozhitov — Dr. Sci. (Eng.), Professor, Professor of the Department of Technology of Materials of Electronics



D. R. Erofeev
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Danil R. Erofeev — Student



References

1. Hauptmann P., Puttmer A., Henning B. Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sensors and Actuators A-physical. 1998; 67(1-3): 32—48. https://doi.org/10.1016/S0924-4247(97)01725-1

2. Thundat T, Oden P.I, Warmack R.J. Microcantilever sensors. Microscale Thermophysical Engineering. 1997; 1(3): 185—199.

3. Ilic B., Czaplewski D., Craighead H.G., Neuzil P., Campagnolo C., Batt C. Mechanical resonant immunospecific biological detector. Applied Physics Letters. 2000; 77: 450—452. https://doi.org/10.1063/1.127006

4. Chopra N.G., Zettl A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications. 1998; 105(5): 297—300. https://doi.org/10.1016/S0038-1098(97)10125-9

5. Ghorbanpour A.A, Roudbari M.A., Amir S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Physica B: Condensed Matter. 2012; 407(17): 3646—3653. https://doi.org/10.1016/j.physb.2012.05.043

6. Ghorbanpour A.A., Roudbari M.A. Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films. 2013; 542: 232—241. https://doi.org/10.1016/j.tsf.2013.06.025

7. Ghorbanpour A.A., Hafizi B.A., Ravandi K.A., Roudbari M.A., Amir S., Azizkhani M.B. Induced nonlocal electric wave propagation of boron nitride nanotubes. Journal of Mechanical Science and Technology. 2013; 27: 3063—3071. https://doi.org/10.1007/s12206-013-0705-7

8. Ghorbanpour A.A., Roudbari M.A. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs. Physica B: Condensed Matter. 2014; 452: 159—165. https://doi.org/10.1016/j.physb.2014.07.017

9. Ghorbanpour A.A., Jalilvand A., Ghaffari M., Talebi M.M., Kolahchi R, Roudbari M.A., Amir S. Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Scientia Iranica. 2014; 21(3): 1183—1196.

10. Ghorbanpour A.A., Karamali R.A., Roudbari M.A., Azizkhani M.B., Bidgoli A. Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory. Journal of Solid Mechanics. 2015; 7(3): 239—254.

11. Ansari R., Rouhi S., Mirnezhad M., Aryayi M. Stability characteristics of single-walled boron nitride nanotubes. Archives of Civil and Mechanical Engineering. 2015; 15: 162—170. https://doi.org/10.1016/J.ACME.2014.01.008

12. Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A. Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochemical and Biophysical Research Communications. 2010; 394(2): 405—411. https://doi.org/10.1016/j.bbrc.2010.03.035

13. Chowdhury R., Wang C.Y., Adhikari S., Scarpa F. Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology. 2010; 21(36): 365702—365703 https://doi.org/10.1088/0957-4484/21/36/365702

14. Chowdhury R., Adhikari S. Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations. IEEE Transactions on Nanotechnology. 2011; 10(4): 659—667. https://doi.org/10.1109/TNANO.2010.2060492

15. Panchal M.B., Upadhyay S.H., Harsha S.P. Mass detection using single walled boron nitride nanotube as a nanomechanical resonator. Nano Brief Reports and Reviews. 2012; 7(4): 1250029—1250030. https://doi.org/10.1142/S1793292012500294

16. Panchal M.B., Upadhyay S.H., Harsha S.P. Vibrational analysis of boron nitride nanotube based nanoresonators. Journal of Nanotechnology in Engineering and Medicine. 2012; 3(3): 031004—031009. https://doi.org/10.1115/1.4007696

17. Panchal M.B., Upadhyay S.H. Cantilevered single walled boron nitride nanotube based nanomechanical resonators of zigzag and armchair forms. Physica E Low-dimensional Systems and Nanostructures. 2013; 50: 73—82. https://doi.org/10.1016/j.physe.2013.02.018

18. Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based biosensing of various bacterium/viruses: Continuum modelling-based simulation approach. IET Nanobiotechnology. 2014; 8(3): 143—148. https://doi.org/10.1049/iet-nbt.2013.0020

19. Panchal M.B., Upadhyay S.H. Boron nitride nanotube-based mass sensing of zeptogram scale. Spectroscopy Letters. 2014; 47(5): 17—21. https://doi.org/10.1080/00387010.2013.850437

20. Adhikari S. Boron nitride nanotubes in nanomedicine. In: A volume in micro and nano technologies. NY: Elsevier Inc; 2016. P. 149—164.

21. Boroznin S.V. Investigation of the role of impurity boron atoms in the metallization of carbon nanotubes. Proceedings of South-West State University. Series Technics and Technologies. 2022; 12(1): 159—173. (In Russ.). https://doi.org/10.21869/2223-1528-2022-12-1-159-173

22. Zaporotskova I.V., Boroznina N.P., Boroznin S.V. Nanotechnology: contribution to inclusive growth in Russia. In: Inshakova E.I., Inshakova A.O., eds. Smart Innovation, Systems and Technologies. Singapore: Springer; 2022. P. 137—149. https://doi.org/10.1007/978-981-16-9804-0_12

23. Boroznin S.V. Сarbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Modern Electronic Materials. 2022; 8(1): 23–42. https://doi.org/10.3897/j.moem.8.1.84317; https://elibrary.ru/wawpmy

24. Zaporotskova I.V., Dryuchkov E.S., Boroznina N.P., Kozhitov L.V., Popkova A.V. Surface-modified boron-carbon BC5 nanotube with amine group as a sensor device element: Theoretical research. Russian Microelectronics. 2021; 50(8): 644—648. https://doi.org/10.1134/S1063739721080096

25. Boroznina N.P., Boroznin S.V., Zaporotskova I.V., Zaporotskov P.A. Comparative analysis of the effectiveness of the sensory properties of carbon nanotubes when modifying their surface with boron atoms. In: Popkova E.G., Sergi B.S., eds. "Smart technologies" for society, state and economy. ISC 2020. Lecture Notes in Networks and Systems. Springer, Cham.; 2021. Vol. 155. P. 28—296. https://doi.org/10.1007/978-3-030-59126-7_32

26. Boroznina N., Zaporotskova I., Boroznin S., Dryuchkov E.S. Sensors based on amino group surface-modified CNTs. Chemosensors. 2019; 7(1): 11—19. https://doi.org/10.3390/CHEMOSENSORS7010011


Review

For citations:


Boroznina N.P., Zaporotskova I.V., Zaporotskov P.A., Kozhitov L.V., Erofeev D.R. Studies of the interaction of modified nitro group boronitride nanotubes with gas-phase carbon-containing molecules to create sensor devices. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022;25(4):261-270. (In Russ.) https://doi.org/10.17073/1609-3577-2022-4-261-270. EDN: DDKFWU

Views: 432


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)