Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Magnetoelectric effect in trilayered gradient composites LiNbO3/Ni/Metglas

https://doi.org/10.17073/1609-3577-2023-1-26-35

EDN: KGYSYH

Abstract

In this work the effect of annealing in a constant magnetic field on the magnetoelectric (ME) coefficient in three-layered gradient composites<LiNbO3/Ni/Metglas> is investigated. A technique of nickel electrochemical deposition on bidomain lithium niobate crystals was demonstrated. It is shown that the optimum temperature for the formation of the maximum remanent magnetization of the Ni layer in a constant magnetic field is 350 °C. In the samples annealed at this temperature, the maximum shift of the dependence of the ME coefficient on the external constant magnetic field relative to the value of 0 Oe was achieved. Quasistatic ME coefficient value was 1.2 V/(cm∙Oe) without applying of external DC magnetic field. The maximum value of the ME coefficient was reached 199.3 V/(cm∙Oe) at bending resonance of 278 Hz without external DC magnetic field. Obtained in this work values of ME coefficients don’t yield to most of ME composite materials which were published before.

About the Authors

V. V. Kuts
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Viktor V. Kuts — Junior Researcher, Department of Materials Science of Semiconductors and Dielectrics



A. V. Turutin
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Andrei V. Turutin — Cand. Sci. (Phys.-Math.), Senior Researcher, Department of Materials Science of Semiconductors and Dielectrics



A. M. Kislyuk
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Alexander M. Kislyuk — Researcher, Department of Materials Science of Semiconductors and Dielectrics



I. V. Kubasov
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Ilya V. Kubasov — Cand. Sci. (Phys.-Math.), Senior Researcher, Department of Materials Science of Semiconductors and Dielectrics



R. N. Zhukov
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Roman N. Zhukov — Researcher, Department of Materials Science of Semiconductors and Dielectrics



A. A. Temirov
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Alexander A. Temirov — Researcher, Department of Materials Science of Semiconductors and Dielectrics



M. D. Malinkovich
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Mikhail D. Malinkovich — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science of Semiconductors and Dielectrics



N. A. Sobolev
National University of Science and Technology MISIS; Universidade de Aveiro
Portugal

4-1 Leninsky Ave., Moscow 119049, Russian Federation;

3810-193 Aveiro, Portugal

Nikholai A. Sobolev — Cand. Sci. (Phys.-Math.), Researcher, Department of Materials Science of Semiconductors and Dielectrics; PhD, Associate Professor, Department of Physics

 



Yu. N. Parkhomenko
National University of Science and Technology MISIS; Federal State Research and Development Institute of Rare Metal Industry (Giredmet JSC)
Russian Federation

4-1 Leninsky Ave., Moscow 119049;

2-1 Elektrodnaya Str., Moscow 111524

Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant, Department of Materials Science of Semiconductors and Dielectrics (1);  Scientific Consultant (2)



References

1. Eerenstein W., Mathur N.D., Scott J.F. Multiferroic and magnetoelectric materials. Nature. 2006; 442: 759-765. https://doi.org/10.1038/nature05023

2. Vopson M.M. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences. 2015; 40: 223-250. https://doi.org/10.1080/10408436.2014.992584

3. Nan C.W., Bichurin M.I., Dong S., Viehland D., Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. Journal of Applied Physics. 2008; 103(3): 031101-031136. https://doi.org/10.1063/1.2836410

4. Bichurin M., Viehland D., Srinivasan G. Magnetoelectric Interactions in ferromagnetic-piezoelectric layered structures: Phenomena and devices. Journal of Electroceramics. 2007; 19(4): 243-250. https://doi.org/10.1007/s10832-007-9058-x

5. Tu C., Chu Z.-Q., Spetzler B., Hayes P., Dong C.-Z., Liang X.-F., Chen H.-H., He Y.-F., Wei Y.-Y., Lisenkov I., Lin H., Lin Y.-H., McCord J., Faupel F., Quandt E., Sun N.-X. mechanical-resonance-enhanced thin-film magnetoelectric heterostructures for magnetometers, mechanical antennas, tunable RF inductors, and filters. Materials (Basel). 2019; 12(14): 22-52. https://doi.org/10.3390/ma12142259

6. Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics. 2005: 38(8): 123-152. https://doi.org/10.1088/0022-3727/38/8/R01

7. Palneedi H., Annapureddy V., Priya S., Ryu J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators. 2016; 5(1): 9-40. https://doi.org/10.3390/act5010009

8. Yang S., Xu J., Zhang X., Fan S., Zhang C., Huang Y., Li Q., Wang X., Cao D., Xu J. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022; 55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5

9. Jing W.Q., Fang F. Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Applied Physics Letters. 2015; 106(21): 212901-212902. https://doi.org/10.1063/1.4921743

10. Pourhosseiniasl M., Yu Z., Chu Z., Yang J., Xu J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625

11. Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias. Physical Review B: Condensed Matter and Materials Physics. 2011; 84(1): 011432-014440. https://doi.org/10.1103/PhysRevB.84.014432

12. Lage E., Kirchhof C., Hrkac V., Kienle L., Jahns R., Knöchel R., Quandt E., Meyners D. Biasing of magnetoelectric composites. Nature Materials. 2012; 11(6): 523-529. https://doi.org/10.1038/nmat3306

13. Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Y.N. Bidomain ferroelectric crystals: properties and prospects of application. Russian Microelectronics. 2021; 50(8): 571-616. https://doi.org/10.1134/S1063739721080035

14. Turutin A.V., Kubasov I.V., Kislyuk A.M., Kuts V.V., Malinkovich M.D., Parkhomenko Y.N., Sobolev N.A. Ultra-sensitive magnetoelectric sensors of magnetic fields for biomedical applications. Nanobiotechnology Reports. 2022; 17: 261-289. https://doi.org/10.1134/S2635167622030223

15. Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Pakhomov O.V., Kholkin A.L., Sobolev N.A. Magnetoelectric metglas/bidomain y +140°-cut lithium niobate composite for sensing FT magnetic fields. Applied Physics Letters. 2018; 112(26): 262906-263100. https://doi.org/10.1063/1.5038014

16. Turutin A.V., Vidal J.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Kholkin A.L., Sobolev N.A. Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork. Journal of Magnetism and Magnetic Materials. 2019; 486: 165209-165253. https://doi.org/10.1016/j.jmmm.2019.04.061

17. Liang X., Matyushov A., Hayes P., Schell V., Dong C., Chen H., He Y., Will-Cole A., Quandt E., Martins P., Mccord J., Medarde M., Lanceros-Méndez S., Van Dijken S., Sun N., Sort J. Roadmap on magnetoelectric materials and devices. IEEE Transactions of Magnetics. 2021; 57(8): 4000157-400400213. https://doi.org/10.1109/TMAG.2021.3086635

18. Huang D., Lu C., Han B., Wang X., Li C., Xu C., Gui J., Lin C. Giant self-biased magnetoelectric coupling characteristics of three-phase composite with end-bonding structure. Applied Physics Letters. 2014; 105(1): 0263502-0263507. https://doi.org/10.1063/1.4904799

19. Zhang H., Lu C., Sun Z. Large self-biased magnetoelectric response in four-phase heterostructure with multiple low-frequency peaks. Applied Physics Letters. 2015; 106(3): 033505-0335101. https://doi.org/10.1063/1.4906414

20. Jing W.Q., Fang F. Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Applied Physics Letters. 2015; 106(21): 212901-212902. https://doi.org/10.1063/1.4921743

21. Kumar A., Arockiarajan A. Temperature dependent magnetoelectric (ME) response in press-fit FeNi/PZT/Ni self-biased ring composite. Journal of Applied Physics. 2019; 106(9): 094102-094103. https://doi.org/10.1063/1.5108708

22. Deka B., Lee Y.W., Yoo I.R., Gwak D.W., Cho J., Song H.C., Choi J.J., Hahn B.D., Ahn C.W., Cho K.H. Designing ferroelectric/ferromagnetic composite with giant self-biased magnetoelectric effect. Applied Physics Letters. 2019; 115(19): 192901-192903. https://doi.org/10.1063/1.5128163

23. Pourhosseiniasl M.J., Yu Z., Chu Z., Yang J., Xu J.J., Hou Y., Dong S. Enhanced self-bias magnetoelectric effect in locally heat-treated ME laminated composite. Applied Physics Letters. 2019; 115(11): 112901-112902. https://doi.org/10.1063/1.5116625

24. Jing W.Q., Fang F. A flexible multiferroic composite with high self-biased magnetoelectric coupling. Composites Science and Technology. 2017; 153: 145-150. https://doi.org/10.1016/j.compscitech.2017.10.010

25. Yang S.C., Park C.S., Cho K.H., Priya S. Self-biased magnetoelectric response in three-phase laminates. Journal of Applied Physics. 2010; 108(9): 093706-6. https://doi.org/10.1063/1.3493154

26. Huang D., Lu C., Bing H. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure. AIP Advances. 2015; 5(4): 047140-047147. https://doi.org/10.1063/1.4919248

27. Jovičević K.M., Thormählen L., Röbisch V., Toxværd S.D., Höft M., Knöchel R., Quandt E., Meyners D., McCord J. Antiparallel exchange biased multilayers for low magnetic noise magnetic field sensors. Applied Physics Letters. 2019; 114(19): 192410-192429. https://doi.org/10.1063/1.5092942

28. Ma J.N., Xin C.Z., Ma J., Lin Y.H., Nan C.W. A cost-effective self-biased magnetoelectric effect in SrFe12O19/Metglas/Pb(Zr,Ti)O3 laminates. Journal of Physics D: Applied Physics. 2016; 49(40): 405002-405007. http://dx.doi.org/10.1088/0022-3727/49/40/405002

29. Yang S., Xu J., Zhang X., Fan S., Zhang Ch.-Y., Huang Y.-С., Li Q., Wang X., Cao D., Li Sh. Self-biased Metglas/PVDF/Ni magnetoelectric laminate for AC magnetic sensors with a wide frequency range. Journal of Physics D: Applied Physics. 2022;55(17): 175002-175003. https://doi.org/10.1088/1361-6463/ac4cf5

30. Chen L., Li P., Wen Y., Zhu Y. Near-flat self-biased magnetoelectric response in three-phase Metglas/Terfenol-D/PZT-laminated composites. IEEE Transactions on Magnetics. 2015; 51(11). https://doi.org/10.1109/TMAG.2015.2451140

31. Li M., Wang Z., Wang Y., Li J., Viehland D. Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Applied Physics Letters. 2013; 102(8): 082404-082601. https://doi.org/10.1063/1.4794056

32. Mandal S.K., Sreenivasulu G., Petrov V.M., Srinivasan G. Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Applied Physics Letters. 2010; 96(19): 192502-192503-3. https://doi.org/10.1063/1.3428774


Review

For citations:


Kuts V.V., Turutin A.V., Kislyuk A.M., Kubasov I.V., Zhukov R.N., Temirov A.A., Malinkovich M.D., Sobolev N.A., Parkhomenko Yu.N. Magnetoelectric effect in trilayered gradient composites LiNbO3/Ni/Metglas. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(1):26-35. (In Russ.) https://doi.org/10.17073/1609-3577-2023-1-26-35. EDN: KGYSYH

Views: 506


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)