Characteristic features of oxygen exchange in lanthanum-strontium manganites doped with iron
https://doi.org/10.17073/1609-3577-2023-1-5-16
EDN: NHYGPN
Abstract
Based on the data of thermogravimetric analysis the values of the oxygen index (3–δ) in the manganite of the La0.7Sr0.3Mn0.9Fe0.1O3-δ composition, obtained by solid-phase reaction technique, have been calculated. The analysis of oxygen sorption-desorption curves showed that the processes of oxygen release and absorption at pO2 = 10 Pa and pO2 = 400 Pa are not reversible. The minima of the derivative dδ/dt = f(T) corresponding to the maxima of the oxygen extraction rate indicate the complex character of changes in the oxygen desorption rate from manganite. The decrease in the heating and cooling rate from 6.6 to 2.6 K/min resulted in a significant change in the value ∆δ, indicating the dependence of anion mobility on the oxygen concentration in the magnet structure. It has been revealed that in the La0.7Sr0.3Mn0.9Fe0.1O3-δ manganite the oxygen desorption kinetics is well described by the exponential dependence on the Cramers model, which implies no return of desorbed oxygen to the sample. This model indicates the non-stationarity of the diffusion flux through the barrier during desorption of oxygen from samples. The calculation of the activation energy of oxygen desorption by the Merzhanov method at various partial pressures of oxygen has shown that at the initial stage of oxygen extraction from La0.7Sr0.3Mn0.9Fe0.1O3-δ, the activation energy of oxygen desorption has a minimum value (Еа = 103.7 kJ/mol at δ = 0.005) and as the concentration of oxygen vacancies increases, it rises reaching saturation (Еа = 134.3 kJ/mol at δ = 0.06). It is assumed that with an increase in the concentration of oxygen vacancies, an interaction occurs between them, followed by the processes of their ordering with the formation of associates.
Keywords
About the Authors
A. L. GurskiiBelarus
6 P. Brovka Str., Minsk 220013
Alexander L. Gurskii — Dr. Sci. (Phys.-Math.), Professor
N. A. Kalanda
Belarus
19 P. Brovka Str., Minsk 220072
Nikolay A. Kalanda — Cand. Sci. (Phys.-Math.), Leading Researcher
M. V. Yarmolich
Belarus
19 P. Brovka Str., Minsk 220072
Marta V. Yarmolich — Cand. Sci. (Phys.-Math.), Head of the Department
A. V. Petrov
Belarus
19 P. Brovka Str., Minsk 220072
Alexander V. Petrov — Cand. Sci. (Phys.-Math.), Senior Researcher
P. N. Kireev
Belarus
41 Platonov Str., Minsk 220005
Petr N. Kireev — Cand. Sci. (Eng.), Head of Department
References
1. Goodenough J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004; 67: 1915—1994. https://doi.org/10.1088/0034-4885/67/11/R01
2. Balagurov A.M., Bushmeleva S.N., Pomjakushin V.Yu., Sheptyakov D.V., Amelichev V.A., Gorbenko O.Yu., Kaul A.R., Gan’shina E.A., Perkins N.B. Magnetic structure of NaMnO3 consistently doped with Sr and Ru. Physical Review B. 2004; 70: 014427. https://doi.org/10.1103/PhysRevB.70.014427
3. Dunaevsky S.M. Magnetic phase diagrams of manganites in the area of their electronic doping (a Review). Fizika Tverdogo Tela. 2004; 46(2): 193—211. (In Russ.)
4. Kozlenko D.P., Glazkov V.P., Jirák Z., Savenko B.N. High pressure effects on the crystal and magnetic structure of Pr1-xSrxMnO3 manganites (x = 0.5–0.56). Journal of Physics: Condensed Matter. 2004; 16(13): 2381—2394. https://doi. org/10.1088/0953-8984/16/13/017
5. Yanchevskii O.Z., V’yunov O.I., Belous A.G., Tovstolytkin A.I., Kravchik V.P. Synthesis and properties of La0.7Sr0.3Mn1-xTixO3. Fizika Tverdogo Tela. 2006; 48(4): 667—673. (In Russ.)
6. McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2006; 177(19–25): 1737—1742. https://doi.org/10.1016/j.ssi.2006.03.041
7. Nagaev E.L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors. Physics – Uspekhi. 1996; 39(8): 781—806. https://doi.org/10.1070/PU1996v039n08ABEH000161
8. Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ‘‘112’’ structure. Journal of Solid State Chemistry. 1999; 142(2): 247—260. https://doi.org/10.1006/jssc.1998.7934
9. Yamazoe N., Furukawa S., Teraoka Y., Seiyama T. The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chemistry Letters. 1982; 11(12): 2019—2022. https://doi.org/10.1246/cl.1982.2019
10. van den Brink J., Khaliullin G., Khomskii D. Charge and orbital order in half-doped manganites. Physical Review Letters. 1999; 83(24): 5118. https://doi.org/10.1103/PhysRevLett.83.5118
11. Deshmukh A.V., Patil S.I., Bhagat S.M., Sagdeo P.R., Choudhary R.J., Phase D.M. Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3. Journal of Physics D: Applied Physics. 2009; 42(18): 185410. https://doi.org/10.1088/0022-3727/42/18/185410
12. Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. Journal of Solid State Chemistry. 1990; 87(1): 55—63. https://doi. org/10.1016/0022-4596(90)90064-5
13. Kruidhof H., Bouwmeester H.J.M., v. Doorn R.H.E., Burggraaf A.J. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics. 1993; 63–65: 816—822. https://doi.org/10.1016/0167-2738(93)90202-E
14. Ritter C., Ibarra M.R., Morellon L., Blasco J., Garcia J., De Teresa J.M. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). Journal of Physics: Condensed Matter. 2000; 12(38): 8295—8308. https://doi.org/10.1088/0953-8984/12/38/306
15. Goodenough J.B. Metallic oxides. Progress in Solid State Chemistry. 1971: 5: 145—399. https://doi.org/10.1016/0079-6786(71)90018-5
16. Troyanchuk I.O., Bushinsky M.V., Szymczak H., Bärner K., Maigna A. Magnetic interaction in Mg, Ti, Nb doped manganites. European Physical Journal B. 2002: 28(1): 75—80. https://doi.org/10.1140/epjb/e2002-00202-2
17. Ulyanov A.N., Mazur A.S., Yang D.C., Krivoruchko V.N., Danilenko I.A., Konstantinova T.E., Levchenko G.G. Local structural and magnetic inhomogeneities in nanosized La0.7Sr0.3MnO3 manganites. Nanosystems, Nanomaterials, Nanotechnologies. 2011; 9(1): 107—114. (In Russ.)
18. Kalanda N.A., Yarmolich M.V., Gurskii A.L., Petrov A.V., Zhaludkevich A.L., Ignatenko O.V., Serdechnova M. Oxygen nonstoichiometry and magnetic properties of doped manganites La0.7Sr0.3Mn0.95Fe0.05O3-δ. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022; 25(1): 52—63. (In Russ.). https://doi.org/10.17073/1609-3577-2022-1-52-63
19. dos Santos-Gómez L., Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Marrero-Lopez D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics. 2013; 239: 1—7. https://doi.org/10.1016/j.ssi.2013.03.005
20. Kraus W. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29(3): 301—303. https://doi. org/10.1107/S0021889895014920
21. Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter. 2001; 26: 12—19.
22. Меrzhanov А.G., Barzykin V.V., Shteinberg A.S., Gontkovskaya V.T. Methodological Principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochimica Acta. 1977; 21(3): 301—332. https://doi.org/10.1016/0040-6031(77)85001-6
23. Sánchez-Rodríguez D., Eloussifi H., Farjas J., Roura P., Dammak M. Thermal gradients in thermal analysis experiments: Criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochimica Acta. 2014; 589: 37—46. https://doi.org/10.1016/j.tca.2014.05.001
24. Kalanda N.A. Thermally stimulated oxygen desorption in Sr2FeMoO6-δ. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2018; 21(1): 48—53. (In Russ.). https://doi.org/10.17073/1609-3577-2018-1-48-53
25. Tretyakov Yu.D. Development of inorganic chemistry as a fundamental basis for the creation of new generations of functional materials. Uspekhi Khimii. 2004: 73(9): 899—916. (In Russ.)
26. Stiller V. Arrhenius equation and non-equilibrium kinetics. VCH Pub. 1989. 176 p.
27. Mizusaki J., Mori N., Takai H., Yonemura Y., Minamiue H., Tagawa H., Dokiya M., Inaba H., Naraya K., Sasamoto T., Hashimoto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics. 2000; 129(1-4): 163—177. https://doi.org/10.1016/S0167-2738(99)00323-9
Review
For citations:
Gurskii A.L., Kalanda N.A., Yarmolich M.V., Petrov A.V., Kireev P.N. Characteristic features of oxygen exchange in lanthanum-strontium manganites doped with iron. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(1):5-16. (In Russ.) https://doi.org/10.17073/1609-3577-2023-1-5-16. EDN: NHYGPN