Thermal and thermoelectric properties of zinc oxide ceramics alloyed with metals
https://doi.org/10.17073/1609-3577-2023-2-122-136
EDN: ESSMQX
Abstract
The paper studies the thermal, electrical and thermoelectric properties of ZnO–MexOy ceramics with 1 ≤ x, y ≤ 3, where Me = Al, Co, Fe, Ni, Ti. The samples were made on the basis of ceramic sintering technology of powder mixtures of two or more oxides in an open atmosphere with variations in temperature and duration of annealing. Structural and phase studies of ceramics indicate that the addition of powders of MexOy alloying agents to ZnO powder with a wurtzite structure after the synthesis process leads to the release of secondary phases such as Znx(Me)yO4 spinels and a 4-fold increase in the porosity of the resulting ceramics. Studies of thermal conductivity at room temperature indicate the predominance of the lattice contribution. The decrease in thermal conductivity during doping is due to an increase in phonon scattering due to the influence of the following factors: (1) the size factor when replacing zinc ions in the ZnO (wurtzite) crystal lattice with metal ions from the added MexOy oxides; (2) the formation of defects – point, grain boundaries (microstructure grinding); (3) increase in porosity (decrease in density); and (4) formation of additional phase particles (such as spinels Znx(Mе)yO4). The effect of these factors in the substitution of zinc ions with metals (Co, Al, Ti, Ni, Fe) leads to an increase in the thermoelectric Q-factor of ZT by 4 orders of magnitude (due to a decrease in electrical resistivity and thermal conductivity with a relatively small decrease in the coefficient of thermal EMF). The reason for the decrease in electrical resistance is the more uniform redistribution of alloying metal ions in the wurtzite lattice, resulting in an increase in the number of donor centers, formed with an increase in the duration of annealing.
Keywords
About the Authors
A. V. PashkevichBelarus
11 Bobruiskaya Str., Minsk, 220006;
4 Niezaliežnasci Ave., Minsk 220030
Aliaksei V. Pashkevich — Master of Physics, Junior Researcher, Laboratory of Advanced Materials Physics (1), Postgraduate Student of the Department of Solid State Physics (2)
A. K. Fedotov
Belarus
11 Bobruiskaya Str., Minsk, 220006
Alexander K. Fedotov — Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Laboratory of Advanced Materials Physics
E. N. Poddenezhny
Belarus
48 Oktyabrya Ave., Gomel 246746
Eugen N. Poddenezhny — Dr. Sci. (Chem.), Professor, Chief Researcher, Laboratory of Ceramic Materials
L. A. Bliznyuk
Belarus
19 P. Brovka Str., Minsk 220072
Ludmila A. Bliznyuk — Laboratory Manager, Electronic Ceramics Laboratory
V. V. Khovaylo
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Vladimir V. Khovaylo — Dr. Sci. (Phys.-Math.), Professor, Department of Functional Nanosystems and High-Temperature Materials
V. V. Fedotova
Belarus
19 P. Brovka Str., Minsk 220072
Vera V. Fedotova — Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Nonmetallic Ferromagnets
A. A. Kharchanko
Belarus
11 Bobruiskaya Str., Minsk, 220006
Andrei A. Kharchanko — Cand. Sci. (Phys.-Math.), Associate Professor, Senior Researcher, Laboratory of Advanced Materials Physics
References
1. Ponja S.D., Sathasivam S., Parkin I.P., Carmalt C.J. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports. 2020; 10(1): 638. https://doi.org/10.1038/s41598-020-57532-7
2. Lee Y.-P., Lin Ch-Ch., Hsiao Ch-Ch., Chou P.-A., Cheng Y.-Y., Hsieh Ch-Ch., Dai Ch-A. Nanopiezoelectric devices for energy generation based on ZnO nanorods / flexible-conjugated copolymer hybrids using all wet-coating processes. Micromachines. 2020; 11(1): 14. https://doi.org/10.3390/mi11010014
3. Bernik S., Daneu N. Characteristics of SnO2-doped ZnO-based varistor ceramics. Journal of the European Ceramic Society. 2001; 21(10-11): 1879–1882. https://doi.org/10.1016/S0955-2219(01)00135-2
4. Wu X., Lee J., Varshney V., Wohlwend J.L., Roy A.K., Luo T. Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics – a comparative study with gallium nitride. Scientific Reports. 2016; 6(1): 22504. https://doi.org/10.1038/srep22504
5. Sawalha A., Abu-Abdeen M., Sedky A., Electrical conductivity study in pure and doped ZnO ceramic system. Physica B: Condensed Matter. 2009; 404(8-11): 1316–1320. https://doi.org/10.1016/j.physb.2008.12.017
6. Winarski D. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method. Thesis diss. of master science. Graduate College of Bowling Green State University; 2015.
7. Chen H., Zheng L., Zeng J., Li G., Effect of Sr doping on nonlinear current-voltage properties of ZnO-based ceramics. Journal of Electronic Materials. 2021; 50(7): 4096–4103. https://doi.org/ 10.1007/s11664-021-08960-2
8. Mohammed M.A., Izman S., Alias M.N., Rajoo S., Uday M.B., Obayes N.H., Omar M.F. A review of thermoelectric ZnO nanostructured ceramics for energy recovery. International Journal of Engineering & Technology. 2018; 7(2.29): 27–30. https://doi.org/10.14419/IJET.V7I2.29.13120
9. Colder H., Guilmeau E., Harnois C., Marinel S., Retoux R., Savary E. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. Journal of the European Ceramic Society. 2011; 31(15): 2957–2963. https://doi.org/10.1016/j.jeurceramsoc.2011.07.006
10. Jeong A., Suekuni K., Ohtakia M., Jang B.-K. Thermoelectric properties of In- and Ga-doped spark plasma sintered ZnO ceramics. Ceramics International. 2021; 47(17): 23927–23934. https://doi.org/10.1016/j.ceramint.2021.05.101
11. Levinson L.M., Hirano S. Ceramic transactions. In: Procced. of Inter. symposium. Vol. 41. Grain boundaries and interfacial phenomena in electronic ceramics. Westerville: American Ceramic Society; 1994.
12. Li J., Yang S., Pu Y., Zhu D. Effects of pre-calcination and sintering temperature on the microstructure and electrical properties of ZnO-based varistor ceramics. Materials Science in Semiconductor Processing. 2021; 123(6): 105529. https://doi.org/10.1016/j.mssp. 2020.105529
13. Liang X. Thermoelectric transport properties of naturally nanostructured Ga–ZnO ceramics: Effect of point defect and interfaces. Journal of the European Ceramic Society. 2016; 36(7): 1643–1650. https://doi.org/10.1016/j.jeurceramsoc.2016.02.017
14. Liang X. Thermoelectric transport properties of Fe-enriched ZnO with high- temperature nanostructure refinement. ACS Applied Materials & Interfaces. 2015; 7(15): 7927–7937. https://doi.org/10.1021/am509050a
15. Walia S., Balendhran S., Nili H., Zhuiykov S., Rosengarten G., Wang Q.H., Bhaskaran M., Sriram S., Strano M.S., Kalantar-zadeh K. Transition metal oxides – thermoelectric properties. Progress in Materials Science. 2013; 58(8): 1443–1489. https://doi.org/10.1016/j.pmatsci.2013.06.003
16. Li P., Zhang H., Gao C., Jiang G., Li Z. Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. Journal of Materials Science: Materials in Electronics. 2019; 30(21): 19598–19608. https://doi.org/10.1007/s10854-019-02333-6
17. Pullar R.C., Piccirilloa C., Novais R.M., Quarta A., Bettini S., Iafisco M. A sustainable multi-function biomorphic material for pollution remediation or UV absorption: aerosol assisted preparation of highly porous ZnO-based materials from cork templates. Journal of Environmental Chemical Engineering. 2019; 7(2): 102936. https://doi.org/10.1016/j.jece.2019.102936
18. Sun Q., Li G., Tian T., Zeng J., Zhao K., Zheng L., Barre M., Dittmer J., Gouttenoire F., Rousseau A., Kassiba A.H. Co-doping effects of (Al, Ti, Mg) on the microstructure and electrical behavior of ZnO-based ceramics. Journal of the American Ceramic Society. 2020; 103(5): 3194–3204. https://doi.org/10.1111/jace.16999
19. Vu D.V., Le D.H., Nguyen C.X., Trinh T.Q. Comparison of structural and electric properties of ZnO-based n-type thin films with different dopants for thermoelectric applications. Journal of Sol-Gel Science and Technology. 2019; 91(1): 146–153. https://doi.org/10.1007/s10971-019-05024-0
20. Pashkevich A.V., Fedotov A.K., Poddenezhny E.N., Bliznyuk L.A., Fedotova J.A., Basov N.A., Kharchanka A.A., Zukowski P., Koltunowicz T.N., Korolik O.V., Fedotova V.V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co. Journal of Alloys and Compounds. 2022; 895: 162621. https://doi.org/10.1016/j.jallcom.2021.162621
21. Pashkevich A.V., Bliznyuk L.A., Fedotov A.K., Khovaylo V.V., Fedotova V.V., Kharchanka A.A. Thermal and thermoelectric properties of ceramics based on zinc oxide alloyed with iron. Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika. 2022; (3): 56–67. (In Russ.). https://doi.org/10.33581/2520-2243-2022-3-56-67
22. Wu Z.-H., Xie H.-Q., Zhai Y.-B. Preparation and thermoelectric properties of Co-doped ZnO synthesized by sol-gel. Journal of Nanoscience and Nanotechnology. 2015; 15(4): 3147–3150. https://doi.org/10.1166/jnn.2015.9658
23. Sawalha A., Abu-Abdeen M., Sedky A. Electrical conductivity study in pure and doped ZnO ceramic system. Physica B Condensed Matter. 2009; 404(8-11): 1316–1320. https://doi.org/10.1016/j.physb.2008.12.017
24. Gorokhova E.I., Anan’eva G.V., Eron’ko S.B., Oreshchenko E.A., Rodnyi P.A., Chernenko K.A., Khodyuk I.V., Lokshin E.P., Kunshina G.B., Gromov O.G., Lott K.P. Structural, optical, and scintillation characteristics of ZnO ceramics. Journal of Optical Technology.2011; 78(11): 733–760. https://doi.org/10.1364/jot.78.000753
25. Krzhizhanovskaya M.G., Firsova V.A., Bubnova R.S. Application of the Rietveld method for solving problems of powder diffractometry. St. Petersburg: Sankt-Peterburgskii universitet; 2016. 67 p. (In Russ.)
26. Zeer G.M., Fomenko O.Yu., Ledyaeva O.N. Application of scanning electron microscopy in material science. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Khimiya = Journal of Siberian Federal University. Chemistry. 2009; 4(2): 287–293. (In Russ.)
27. Bosi F., Biagioni C., Pasero M. Nomenclature and classification of the spinel supergroup. European Journal of Mineralogy. 2019; 31(1): 183–192. https://doi.org/10.1127/ejm/2019/0031-2788
28. Cheng H., Xu X.J., Hng H.H., Ma J. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceramics International. 2009; 35(8): 3067–3072. https://doi.org/10.1016/j.ceramint.2009.04.010
29. Chernyshova E., Serhiienko I., Kolesnikov E., Voronin A., Zheleznyy M., Fedotov A., Khovaylo V. Influence of NiO nanoparticles on the thermoelectric propertiesof (ZnO)1-x(NiO)x composites. Nanobiotechnology Reports. 2021; 16(3): 381–386. https://doi.org/10.1134/S2635167621030034
30. Adun H., Kavaz D., Wole-Osho I., Dagbasi M. Synthesis of Fe3O4–Al2O3–ZnO / water ternary hybrid nanofluid: Investigating the effects of temperature, volume concentration and mixture ratio on specific heat capacity, and development of hybrid machine learning for prediction. Journal of Energy Storage. 2021; 41(13-14): 102947. https://doi.org/10.1016/j.est.2021.102947
31. Barin I. Thermochemical data of pure substances. Weinheim, Federal Republic of Germany; N.Y., USA: VCH; 1995. 2003 p.
32. Kim H.-S., Gibbs Z.M., Tang Y., Wang H., Snyder G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials. 2015; 3(4): 041506. https://doi.org/10.1063/1.4908244
33. Gadzhiev G.G. The thermal and elastic properties of zinc oxide-based ceramics at high temperatures. High Temperature. 2003; 41(6): 778–782. https://doi.org/10.1023/b:hite.0000008333.59304.58
Review
For citations:
Pashkevich A.V., Fedotov A.K., Poddenezhny E.N., Bliznyuk L.A., Khovaylo V.V., Fedotova V.V., Kharchanko A.A. Thermal and thermoelectric properties of zinc oxide ceramics alloyed with metals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):122-136. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-122-136. EDN: ESSMQX