Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites
https://doi.org/10.17073/1609-3577-2023-2-110-121
EDN: BHQDOC
Abstract
FeCoCu ternary nanoparticles distributed and stabilized in the carbon matrix of FeCoCu/C metal-carbon nanocomposites have been synthesized using controlled IR pyrolysis of precursors consisting of the “polymer / iron acetylacetate / cobalt and copper acetates” type system obtained by joint dissolution of components followed by solvent removal. The effect of the synthesis temperature on the structure, composition and electromagnetic properties of the nanocomposites has been studied. By XRD was shown that the formation of the FeCoCu ternary nanoparticles occurs due to the interaction of Fe3С with the nanoparticles of the CoCu solid solution. An increase in the synthesis temperature leads to an increase in the size of the metal nanoparticles due to their agglomeration and coalescence as a result of matrix reconstruction. Furthermore, ternary alloy nanoparticles having
a variable composition may form depending on the synthesis temperature and the content ratio of the metals. Raman spectroscopy has shown that the crystallinity of the carbon matrix of the nanocomposites increases with the synthesis temperature. The frequency responses of the relative permittivity and permeability of the nanocomposites have been studied at 3–13 GHz. It has been shown that a change in the content ratio of the metals noticeably increases both the dielectric and the magnetic losses. The former loss is caused by the formation of a complex nanostructure of the nanocomposite carbon matrix while the latter one originates from an increase in the size of the nanoparticles and a shift of the natural ferromagnetic resonance frequency to the low-frequency region. The reflection loss has been calculated using a standard method from the experimental data on the frequency responses of the relative permittivity and permeability. It has been shown that the frequency range and the absorption of electromagnetic waves (from –20 to –52 dB) can be controlled by varying the content ratio of the metals in the precursor. The nanocomposites obtained as a result of the experiment deliver better results in comparison with FeCo/C nanocomposites synthesized under similar conditions.
About the Authors
D. G. MuratovRussian Federation
29 Leninsky Ave., Moscow 119991;
4-1 Leninsky Ave., Moscow 119049
Dmitriy G. Muratov — Cand. Sci. (Eng.), Leading Researcher (1), Associate Professor (2)
L. V. Kozhitov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
I. V. Zaporotskova
Russian Federation
100 Universitetsky Ave., Volgograd 400062
Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk 142103
Alena V. Popkova — Senior Researcher
V. A. Tarala
Russian Federation
1 Pushkin Str., Stavropol 355017
Vitaly А. Tarala — Cand. Sci. (Chem.), Senior Researcher
E. Yu. Korovin
Russian Federation
36 Lenin Ave., Tomsk 634050
Evgeniy Yu. Korovin — Cand. Sci. (Phys.-Math.)
A. V. Zorin
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Artem V. Zorin — Postgraduate Student
References
1. Lu A.-H., Salabas Е.L., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition. 2007; 46(8): 1222—1244. https://doi.org/10.1002/anie.200602866
2. Gubin S.P., Spichkin Y.I., Yurkov G.Yu., Tishin A.M. Nanomaterial for high-density magnetic data storage. Russian Journal of Inorganic Chemistry. 2002; 47(1): S32—S67.
3. Xu Y.H., Bai J., Wang J.-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. Journal of Magnetism and Magnetic Materials. 2007; 311(1): 131—134. https://doi.org/10.1016/j.jmmm.2006.11.174
4. Khadzhiev S.N., Kulikova M.V., Ivantsov M.I., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Bondarenko G.N., Oknina N.V. Fischer-Tropsch synthesis in the presence of nanosized iron-polymer catalysts in a fixed-bed reactor. Petroleum Chemistry. 2016; 56: 522—528. https://doi.org/10.1134/S0965544116060049
5. Qiu F., Dai Y., Li Li, Xu Ch., Huang Y., Chen Ch., Wang Y., Jiao L., Yuan H. Synthesis of Cu@FeCo core-shellnanoparticles for the catalytic hydrolysis of ammonia borane. International Jornal of Hydrogen Energy. 2014; 39(1): 436—441.
6. Xu M.H., Zhong W., Qi X.S., Au C.T., Deng Y., Du Y.W. Highly stable Fe-Ni alloy nanoparticles encapsulated in carbon nanotubes: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds. 2010; 495(1): 200—204. https://doi.org/10.1016/j.jallcom.2010.01.121
7. Bahgat M., Paek M.-K., Pak J.-J. Comparative synthesize of nanocrystalline Fe-Ni and Fe-Ni-Co alloys during hydrogen reduction of NixCo1-xFe2O4. Journal of Alloys and Compounds. 2008; 466(1-2): 59—66. https://doi.org/10.1016/j.jallcom.2008.01.147
8. Azizi A., Yoozbashizadeh H., Sadrnezhaad S.K. Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder. Journal of Magnetism and Magnetic Materials. 2009; 321(18): 2729—2732. https://doi.org/10.1016/j.jmmm.2009.03.085
9. Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203. https://doi.org/10.1016/S0304-8853(00)00081-0
10. Dalavi S.B., Theerthagiri J., Raja M.M., Panda R.N. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys. Journal of Magnetism and Magnetic Materials. 2013; 344: 30—34. https://doi.org/10.1016/j.jmmm.2013.05.026
11. Prasad N.Kr., Kumar V. Microstructure and magnetic properties of equiatomic FeNiCo alloy synthesized by mechanical alloying. Journal of Materials Science: Materials in Electronics. 2015; 26(12): 10109—10118. https://doi.org/10.1007/s10854-015-3695-7
12. Zehani K., Bez R., Boutahar A., Hlil E.K., Lassri H., Moscovici J., Mliki N., Bessais L. Structural, magnetic, and electronic properties of high moment FeCo nanoparticlesJ. Journal of Alloys and Compounds. 2014; 591: 58—64. https://doi.org/10.1016/j.jallcom.2013.11.208
13. Yang Y., Xu C., Xia Y., Wang T., Li F. Synthesis and microwave absorption properties of FECO nanoplates. Journal of Alloys and Compounds. 2010; 493(1-2): 549—552. https://doi.org/10.1016/j.jallcom.2009.12.153
14. Liu X.G., Ou Z.Q., Geng D.Y., Han Z., Jiang J.J., Liu W., Zhang Z.D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon. 2010; 48(3): 891—897. https://doi.org/10.1016/j.carbon.2009.11.011
15. Li X., Takahashi S. Synthesis and magnetic properties of Fe-Co-Ni nanoparticles by hydrogen plasma-metal reaction. Journal of Magnetism and Magnetic Materials. 2000; 214(3): 195—203.
16. Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072
17. Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E.Yu., Popkova A.V., Novotortsev V.M. Synthesis, structure and electromagnetic properties of nanocomposites with threecomponent FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(10): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5
18. Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin E.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105
19. Mondal B.N., Basumallick A., Nath D.N., Cnattopaahyuy P.P. Phase evolution and magnetic, behavior of Сu-Ni-Co-Fe quaternary alloys synthesized by ball milling. Material Chemistry and Physics. 2009; 116(2): 358—362. https://doi.org/10.1016/j.matchemphys.2009.03.036
20. Vasilev A.A., Dzidziguri E.L., Efimov M.N., Muratov D.G., Karpacheva G.P. Formation of metal-carbon nanocomposites based on Cu-Fe alloy nanoparticles and carbonized polyacrylonitrile. Fizika i khimiya obrabotki materialov = Physics and Chemistry of Materials Treatment. 2021; (1): 58—66. (In Russ.). https://doi.org/10.30791/0015-3214-2021-1-58-66
21. Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095—14107. https://doi.org/10.1103/physrevb.61.14095
22. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications. 2007; 143(1-2): 47—57. https://doi.org/10.1016/j.ssc.2007.03.052
23. Afghahi S.S., Shokuhfar A. Two stepsinthesis, electromagnetic and microwave absorbing properties of FeCo@C core-shell nanostructure. Journal of Magnetism and Magnetic Materials. 2014; 370: 37—44. https://doi.org/10.1016/j.jmmm.2014.06.040
24. Rodionov V.V. Mechanisms of interaction of microwave radiation with nanostructured carbon-containing materials. Diss. Cand. Sci. (Phys.-Mat.). Kursk; 2015. 169 p. (In Russ.)
Review
For citations:
Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin E.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):110-121. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-110-121. EDN: BHQDOC