Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Crystal structure, piezoelectric and magnetic properties of solid solutions BiMn1-xFexO3 (x ≤ 0.4)

https://doi.org/10.17073/1609-3577-2023-2-157-165

EDN: RMVGAK

Abstract

Сrystal structure, piezoelectric and magnetic properties of solid solutions BiMn1-xFexO3 (x ≤ 0.4) prepared by solid-phase reactions from a stoichiometric mixture of simple oxides at high pressures and temperatures have been studied. The structure of the compounds is characterized by the concentration driven phase transition from the monoclinic structure to the orthorhombic structure at x ≈ 0.2; wherein the ordering dz2 of the orbitals of Mn3+ ions is destroyed, and the inhomogeneous magnetic state is stabilized. Solid solutions with 0.2 ≤ x ≤ 0.4 are characterized by a nonzero piezoelectric response, wherein both ferroelectric and magnetic domain structures exist, the ferroelectric switching voltage decreases with an increase of iron ions concentration, while the residual magnetization value decreases. The maximum value of the piezoresponse signal is observed in the compound BiMn0.7Fe0.3O3. The work clarifies the relationship between the chemical composition, the crystal structure, piezoelectric and magnetic properties of solid solutions BiMn1-xFexO3. The presence of both magnetic and electric dipole ordering indicates the perspectives for the practical usage of such materials. 

About the Authors

M. V. Silibin
National Research University “Moscow Institute of Electronic Technology”
Russian Federation

1 Shokin Sq., Zelenograd, Moscow 124498

Maxim V. Silibin – Cand. Sci. (Eng.), Associate Professor, Institute of Advanced Materials and Technologies



D. A. Kiselev
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Dmitry A. Kiselev — Ph.D, Cand. Sci. (Phys.-Math.), Head of the Laboratory of Physics of Oxide Ferroelectrics



S. I. Latushko
National Research University “Moscow Institute of Electronic Technology”; Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

1 Shokin Sq., Zelenograd, Moscow 124498;

19 P. Brovka Str., Minsk 220072

Sergey I. Latushko — Junior Researcher,



D. V. Zheludkevich
National Research University “Moscow Institute of Electronic Technology”; Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

1 Shokin Sq., Zelenograd, Moscow 124498;

19 P. Brovka Str., Minsk 220072

Dmitry V. Zheludkevich — Junior Researcher



P. A. Sklyar
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Polina A. Sklyar — Master of Science, Laboratory of Physics of Oxide Ferroelectrics



D. V. Karpinsky
National Research University “Moscow Institute of Electronic Technology”; Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

1 Shokin Sq., Zelenograd, Moscow 124498,

19 P. Brovka Str., Minsk 220072

Dmitry V. Karpinsky — Dr. Sci. (Phys.-Math.), Head Laboratory of Oxide Materials



References

1. Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics. 2009; 2: 20. https://doi.org/10.1103/Physics.2.20

2. Scott J.F. Multiferroic memories. Nature Materials. 2007; 6(4): 256—257. https://doi.org/10.1038/nmat1868

3. Vaz C.A.F., Hoffman J., Ahn Ch.H., Ramesh R. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Advanced Materials. 2010; 22(26–27): 2900—2918. https://doi.org/10.1002/adma.200904326

4. Yoneda Y., Kitanaka Y., Noguchi Y., Miyayama M. Electronic and local structures of Mn-doped BiFeO3 crystals. Physical Review B. Condensed Matter. 2012; 86(18): 184112. https://doi.org/10.1103/PhysRevB.86.184112

5. Kimura T., Goto T., Shintani H., Ishizaka K., Arima T., Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003; 426(6962): 55—58. https://doi.org/10.1038/nature02018

6. Bernardo M.S. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2014; 1(53): 1—14. https://doi.org/10.3989/cyv.12014

7. Neaton J.B., Ederer C., Waghmare U.V., Spaldin N.A., Rabe K.M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Physical Review B. Condensed Matter. 2005; 71(1): 14113. https://doi.org/10.1103/PhysRevB.71.014113

8. Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Advanced Materials. 2009; 21(24): 2463—2485. https://doi.org/10.1002/adma.200802849

9. Efremov D.V., Van den Brink J., Khomskii D.I. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature Materials. 2004; 3(12): 853—856. https://doi.org/10.1038/nmat1236

10. Selbach S.M., Tybell T., Einarsrud M.A., Grande T. Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1-xMnxO3+δ. Chemistry of Materials. 2009; 21(21): 5176—5186. https://doi.org/10.1021/cm9021084

11. Stokes H.T., Kisi E.H., Hatch D.M., Howard Ch.J. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallographica Section B: Structural Science. 2002; 58(Pt 6): 934—938. https://doi.org/10.1107/S0108768102015756

12. Palai R., Katiyar R.S., Schmid H., Tissot P., Clark S.J., Robertson Jv., Redfern S., Catalan G., Scott J.F. Beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3. Physical Review B. Condensed Matter. 2008; 77(1): 014110. https://doi.org/10.1103/PhysRevB.77.014110

13. Belik A.A. Origin of magnetization reversal and exchange bias phenomena in solid solutions of BiFeO3–BiMnO3: intrinsic or extrinsic? Inorganic Chemistry. 2013; 52(4): 2015—2021. https://doi.org/10.1021/ic302384j

14. Denning D., Guyonnet J., Rodriguez B.J. Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond. International Materials Reviews. 2016; 61(1): 46—70. https://doi.org/10.1179/1743280415Y.0000000013

15. Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. Corrigendum: Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology. 2013; 24: 159501. https://doi.org/10.1088/0957-4484/24/15/159501

16. Guennou M., Bouvier P., Chen G.S., Dkhil B., Haumont R., Garbarino G., Kreisel J. Multiple high-pressure phase transitions in BiFeO3. Physical Review B. Condensed Matter. 2011; 84(17): 174107. https://doi.org/10.1103/physrevb.84.174107

17. Mumtaz F., Jaffari G.H., Syed S., Khan S. Model-based quantification of inter-intra-grain electrical parameters, hopping polydispersivity, and local energy barrier profile of BiFeMnO3 synthesized by different methods. Journal of Physics and Chemistry of Solids. 2022; 160: 110334. https://doi.org/10.1016/j.jpcs.2021.110334

18. Azuma M., Kanda H., Belik A.A., Shimakawa Y., Takano M. Magnetic and structural properties of BiFe1-xMnxO3. Journal of Magnetism and Magnetic Materials. 2007; 310(2): 1177—1179. https://doi.org/10.1016/j.jmmm.2006.10.287

19. Karpinsky D.V., Silibin M.V., Latushka S.I., Zhaludkevich D.V., Sikolenko V.V., Svetogorov R., Sayyed M.I., Almousa N., Trukhanov A., Trukhanov S., Belik A.А. Temperature-driven transformation of the crystal and magnetic structures of BiFe0.7Mn0.3O3. Nanomaterials. 2022; 12(16): 2813. https://doi.org/10.3390/nano12162813

20. Karpinsky D.V., Silibin M.V., Zhaludkevich D.V., Latushka S.I., Sikolenko V.V., Többens D.M., Sheptyakov D., Khomchenko V.A., Belik A.A. Crystal and magnetic structure transitions in BiMnO3+δ ceramics driven by cation vacancies and temperature. Materials (Basel). 2021; 14(19): 5805. https://doi.org/10.3390/ma14195805

21. Belik A.A. Structural, magnetic, and dielectric properties of solid solutions between BiMnO3 and YMnO3. Journal of Solid State Chemistry. 2017; 246: 8—15. https://doi.org/10.1016/j.jssc.2016.10.025

22. Goodenough J.B. Theory of the role of covalence in the perovskite-type manganites [La, M (II)] MnO3. Physical Review. 1955; 100(2): 564. https://doi.org/10.1103/PhysRev.100.564

23. Belik A. A. Local distortions in multiferroic BiMnO3 as a function of doping. Science and Technology of Advanced Materials. 2011; 12(4): 044610. http://dx.doi.org/10.1088/1468-6996/12/4/044610

24. Ederer C., Spaldin N.A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Physical Review B. Condensed Matter. 2005; 71: 060401(R). https://doi.org/10.1103/PhysRevB.71.060401


Review

For citations:


Silibin M.V., Kiselev D.A., Latushko S.I., Zheludkevich D.V., Sklyar P.A., Karpinsky D.V. Crystal structure, piezoelectric and magnetic properties of solid solutions BiMn1-xFexO3 (x ≤ 0.4). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(2):157-165. (In Russ.) https://doi.org/10.17073/1609-3577-2023-2-157-165. EDN: RMVGAK

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)