Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Status and prospects for the development of mobile power sources

https://doi.org/10.17073/1609-3577j.met202305.528

Abstract

The physicochemical foundations of the basic structures and technologies for the production of promising electrolytic cells for the accumulation of electrical energy with a specific energy intensity for reusable cells of 350–500 W  ⋅ h/kg at the first stage and 1000 W  ⋅ h/kg at the second stage have been developed. Along with traditional chemical current sources and ionistors, supercapacitive capacitor structures with a thin dielectric in a double electric layer and hybrid capacitors appear, in which energy is accumulated both in a double electric layer and due to electrochemical processes. This approach makes it possible to reduce the internal resistance of electrolytic cells, which leads to a decrease in heat generation during operation and, accordingly, an increase in specific energy consumption, operational safety, a decrease in charging time, and an increase in specific power. 
A promising anode is a nanostructured electrode material, which is a carbon-based matrix filled with a nanostructured reactive material. Promising materials for filling the carbon matrix are Li and its alloys, Si, Al, Na, Sn, Mg, Zn, Ni, Co, Ag, and a number of other materials and their compounds. The influence of the specific area of the carbon material, dielectric constant, addition of a chemically active substance on the specific energy consumption has been studied. The theoretical values of the specific energy capacity of hybrid capacitors with a metal-air system are calculated. A thin-film technological complex has been developed that ensures the creation of a new generation of electrode materials, the design of which is a carbon matrix with a highly developed surface, in which there is a tunnel-thin dielectric, on the surface of which a chemically active material is placed.

About the Authors

V. V. Sleptsov
Moscow Aviation Institute
Russian Federation

4 Volokolamskoe Highway, Moscow 125993

Vladimir V. Sleptsov — Dr. Sci. (Eng.), Professor, Head of the Department of Radio Electronics, Telecommunications and Nanotechnology



L. V. Kozhitov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Lev V. Kozhitov — Dr. Sci. (Eng.), Professor, Professor of the Department of Technology of Materials of Electronics



A. O. Diteleva
Moscow Aviation Institute
Russian Federation

4 Volokolamskoe Highway, Moscow 125993

Anna O. Diteleva — Senior Lecturer, Department of Radio Electronics, Telecommunications and Nanotechnology



D. Yu. Kukushkin
Moscow Aviation Institute
Russian Federation

4 Volokolamskoe Highway, Moscow 125993

Dmitry Yu. Kukushkin — Cand. Sci. (Eng.), Associate Professor, Department of Radio Electronics, Telecommunications and Nanotechnology



A. V. Popkova
JSC “Research Institute NPO” LUCH”
Russian Federation

24 Zheleznodorozhnaya Str., Podolsk 142103

Alena V. Popkova — Senior Researcher



References

1. Skleznev A.A. Analysis of the main trends in the development of chemical current sources and other energy storage devices. Moscow; 2017. (In Russ.)

2. Sleptsov V.V., Zinin Yu.V., Diteleva A.O. Future development of the mobile energy. Uspekhi v khimii i khimicheskoi tekhnologii. 2019; 33(1(211)): 28—30. (In Russ.)

3. Zhang X., Qu N., Yang S., Lei D., Liu A., Zhou Q. Cobalt induced growth of hollow MOF spheres for high performance super-capacitors. Materials Chemistry Frontiers. 2021; (5): 482—491. https://doi.org/10.1039/D0QM00597E

4. Liu X., Shi C., Zhai C., Cheng M., Liu Q., Wang G. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Applied Materials and Interfaces. 2016; 8(7): 4585—4591. https://doi.org/10.1021/acsami.5b10781

5. Yang J., Ma Z., Gao W., Wei M. Layered structural co-based MOF with conductive network frames as a new super-capacitor electrode. Chemistry-A European Journal. 2017; 23(3): 631—636. https://doi.org/10.1002/chem.201604071

6. Zhang Y., Wang Y., Xie Y.-L., Cheng T., Lai W., Pang H., Huang W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance super-capacitors. Nanoscale. 2014; 6(23): 14354—14359. https://doi.org/10.1039/c4nr04782f

7. Mukhiya T., Ojha G.P., Dahal B., Kim T., Chhetri K., Lee M., Chae S.-H., Muthurasu A., Tiwari A.P., Kim H.Y. Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hol-low carbon nanofibers network for supercapacitor. ACS Applied Energy Materials. 2020; 3: 3435—3444. https://doi.org/10.1021/acsaem.9b02501

8. Lebedeva N., Di Persio F., Boon- Brett L. Lithium-ion battery value chain and related opportunities for Europe. EUR 28534 EN, Publications Office of the European Union, Luxembourg; 2017: JRC105010. 25 p. https://doi.org/:10.2760/6060 file:///C:/Users/riona/Downloads/kj1a28534enn.pdf

9. Lebedev E.A. Development of formation processes and research of properties of elements of heat generation and energy storage for thermoelectric batteries. Diss. Cand. Sci. (Eng.). Moscow; 2017. 184 p. (In Russ.)

10. Hou S., Lian Y., Bai Y., Zhou Q., Ban Ch., Wang Zh., Zhao J., Zhang H. Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochimica Acta. 2020; 341: 136053. https://doi.org/10.1016/j.electacta.2020.136053

11. Bai X., Liu J., Liu Q., Chen R., Jing X., Li B., Wang J. In-situ fabrication of MOF-derived co-co layered double hydroxide hollow Nanocages/Graphene composite: a novel electrode material with superior electrochemical performance. Chemistry-A European Journal. 2017; 23(59): 14839—14847. https://doi.org/10.1002/chem.201702676

12. Kim T., Song W., Son D.-Y., Ono L.K., Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A. 2019; 7(7): 2942. https://doi.org/10.1039/c8ta10513h

13. Deng X., Li J., Ma L., J. Sha, Zhao N. Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems. Materials Chemistry Frontiers. 2019; (11): 2221—2245. https://doi.org/10.1039/C9QM00425D

14. Kim T., Song W., So Y., Qi Y. Linium-ion batteries: outloo and hybridized technologies. Journal of Materials Chemistry A. 2019; 7(7): 292. https://doi.org/10.1039/D3TA01384G

15. Chernysheva M.N., Rychagov A.Yu., Kornilov D.Yu., Tkachev S.V., Gubin S.P. Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide. Journal of Electroanalytical Chemistry. 2020; 858: 113774. https://doi.org/10.1016/j.jelechem. 2019.113774

16. Shang W., Yu W., Tan P., Chen B., Wu Zh., Xud H., Ni M. Achieving high energy density and efficiency through integration: progress in hybrid zinc batteries. Journal of Materials Chemistry A. 2019; 7(26): 15564. https://doi.org/10.1039/C9TA04710G

17. Koz'menkova A.Ya. Positive electrodes of lithium-oxygen batteries based on binary titanium compounds. Diss. Cand. Sci. (Eng.). Moscow; 2018. 147 p. (In Russ.)

18. Gorokhovsky A.V., Palagin A.I., Panova L.G., Ustinova T.P., Burmistrov I.N., Aristov D.V. Manufacturing submicro-nanoscale potassium polytitanates and composite materials based on them. Nanotekhnika = Nanotechnics. 2009; (3): 38—44. (In Russ.)

19. Sanchez-Monjaras T., Gorokhovsky A.V., Escalante-Garcia J.I. Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio. Journal of the American Ceramic Society. 2008; 91(9): 3058—3065. https://doi.org/10.1111/j.1551-2916.2008.02574.x

20. Miller J.R., Simon P. Materials science: electrochemical capacitors for energy management. Science. 2008; 321(5889): 651—652. https://doi.org/10.1126/science.1158736

21. Chen X., Paul R., Dai L. Carbon-based supercapacitors for efficient energy storage. National Science Review. 2017; 4(3): 453—489. https://doi.org/10.1093/nsr/nwx009

22. Choi J.U., Voronina N., Sun Y.-K., Myung S.-T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Advanced Energy Materials. 2020; 10(42): 2002027. https://doi.org/10.1002/aenm.202002027

23. Wen P., Gong P., Sun J., Wang J., Yang S. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride compos-ites for an asymmetric supercapacitor with high energy and power density. Journal of Materials Chemistry A. 2015; 3(26): 13874. https://doi.org/10.1039/C5TA02461G

24. Xu J., Yang C., Xue Y., Wang C., Cao J., Chen Z. Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor. Electrochimica Acta. 2016; 211: 595—602.

25. Wu J., Wei F., Sui Y., Qi J., Zhang X. Interconnected NiS-nanosheets@ porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. International Journal of Hydrogen Energy. 2020; 45(38): 19237—19245.

26. Ji F., Jiang D., Chen X., Pan X., Kuang L., Zhang Y., Alameh K., Ding B. Simple in-situ growth of layered Ni3S2 thin film electrode for the development of high-performance supercapacitors. Applied Surface Science. 2017; 399: 432—439. https://doi.org/10.1016/j.apsusc.2016.12.106

27. Javed M.S., Aslam M.K., Asim S., Batool S., Idrees M., Hussain Sh., Shah S.Sh.Ah., Saleem M., Mai W., Hu Ch. High-performance flexible hybrid-supercapacitor enabled by pairing binder-free ultrathin Ni—Co—O nanosheets and metal-organic framework derived N-doped carbon nanosheets. Electrochimica Acta. 2020; 349: 136384. https://doi.org/10.1016/j.electacta.2020.136384

28. Zheng L., Song J., Ye X., Wang Y., Shi X., Zheng H. Construction of self-supported hierarchical NiCo-S nanosheet arrays for supercapacitors with ultrahigh specific capacitance. Nanoscale. 2020; 12(25): 13811—13821. https://doi.org/10.1039/d0nr02976a

29. Sleptsov V.V., Kukushkin D.Yu., Kulikov S.N., Diteleva A.O. Thinfilm nanotechnologies for creating power supply sources. Vestnik mashinostroeniya. 2021; (2): 65—67. (In Russ.). https://doi.org/10.36652/0042-4633-2021-2-65-67

30. Sleptsov V.V., Kozhitov L.V., Muratov D.G., Popkova A.V., Savkin A.V., Diteleva A.O., Kozlov A.P. Thin film vacuum technologies for a production of highly capacitive electrolytic capacitors. Journal of Physics Conference Series. 2019; 1313: 012051. Materials of 26th Inter. conf. on Vacuum Technique and Technology. June 18—20, 2019, St. Petersburg, Russian Federation. https://doi.org/10.1088/1742-6596/1313/1/012051

31. Goffman V.G., Sleptsov V.V., Gorokhovsky A.V., Gorshkov N.V., Kovyneva N.N., Sevryugin A.V., Vikulova M.A., Bainyashev A.M., Makarova A.D., Zaw Lwin K. Energy storage with titanium modified busopytic electrodes. Elektrokhimicheska Energetica. 2020; 20(1): 20—32. (In Russ.). https://doi.org/10.18500/1608-4039-2020-20-1-20-32

32. Elinson V.M., Shchur P. Study of the surface of antimicrobial barrier layers based on fluorocarbon and carbon films. In: Astashynski V.M., Gusarov A.V., Cherenda N.N., eds. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. 2022; 4(26): 11—26. https://doi.org/10.1615/HighTempMatProc.2022043894

33. Sleptsov V., Diteleva A. Thin-film technology for creating flexible supercapacitor electrodes based on a carbon matrix. High Temperature Material Processes. 2020; 24(3): 167—171. https://doi.org/1010.1615/HighTempMatProc.2020035840


Review

For citations:


Sleptsov V.V., Kozhitov L.V., Diteleva A.O., Kukushkin D.Yu., Popkova A.V. Status and prospects for the development of mobile power sources. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(3):217-233. (In Russ.) https://doi.org/10.17073/1609-3577j.met202305.528

Views: 450


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)