Determination of the polarization plane specific rotation in gyrotropic crystals of the middle category by the spectrophotometric method
https://doi.org/10.17073/1609-3577j.met202307.543
Abstract
A large number of modern functional single crystals of the middle category belong to gyrotropic media. In these crystals, when light propagates along the optical axis, rotation of the plane of its polarization is observed. In this work a spectrophotometric method was used to obtain the dispersion dependences of the rotation angle of the polarization plane. This method is based on measuring the intensity of light passing through the polarizer–crystal–analyzer system, the crystal is a polished plane-parallel plate of a uniaxial gyrotropic crystal cut perpendicular to the optical axis. Measurements were carried out on a UV-Vis-NIR spectrophotometer Cary-5000 in the wavelength range of 200—1200 nm using polarizers — Glan–Taylor prisms. Polished plane-parallel plates of known SiO2 and α-LiIO3 crystals were used as samples. The obtained dispersion dependences of the spectral transmission coefficients are oscillating. Discrete values of the specific angles of rotation of the plane of polarization of light are calculated from the extremes on these dependencies. These discrete values can be approximated by the formulas Drude, Chandrasekhar and Vyshina, depending on what determines the nature of the rotational ability of the plane of polarization of light in each particular material. For the studied crystals, dependences of the modified Drude formula of the form 1/ρ = f(λ2) are plotted, these dependences should have a linear character in the case of an ideal crystal. The obtained experimental results correlate well with the available literature data. The advantages of this method are efficiency, the possibility of obtaining dispersion dependences of the specific rotation angle of the polarization plane, the need for a single sample, the possibility of assessing the nature of the rotational ability of specific crystals, the possibility of evaluating the structural perfection of the studied crystals.
Keywords
About the Authors
E. V. ZabelinaRussian Federation
4-1 Leninsky Ave., Moscow 119049
Evgenia V. Zabelina — Cand. Sci. (Phys.-Math.), Researcher, Laboratory “Single Crystals and Stock on their Base”
R. Shahin
Syrian Arab Republic
4-1 Leninsky Ave., Moscow 119049
Reem Shahin — Master
N. S. Kozlova
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Nina S. Kozlova — Cand. Sci. (Phys.-Math.), Leading Expert, Laboratory “Single Crystals and Stock on their Base”
V. M. Kasimova
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Valentina M. Kasimova — Cand. Sci. (Phys.-Math.), Lead Engineer, Laboratory “Single Crystals and Stock on their Base”,
References
1. Prokhorov A.M., ed. Physical encyclopedic dictionary. Moscow: Sovetskaya entsiklopediya; 1984. 944 p. (In Russ.)
2. Kaldybaeva K.A., Konstantinova A.F., Perekalina Z.B. Gyrotropy of uniaxial absorbing crystals. Moscow: Institut sotsial'no-ekonomicheskikh i proizvodstvenno-ekologicheskikh problem investirovaniya; 2000. 294 p. (In Russ.)
3. Blistanov A.A. Crystals of quantum and nonlinear optics. Moscow: MISiS; 2000. 432 p. (In Russ.)
4. Zernike F., Midwinter J.E. Applied nonlinear optics. New York; Sydney; Toronto; London: John Willey and Sons; 1973. 261 p. (Russ. Transl.: Zernike F., Midwinter J.E. Prikladnaya nelineinaya optika. Moscow: Mir; 1976. 261 p.)
5. Nikogosyan D.N. Nonlinear optical crystals: A complete survey. New York: Springer Science and Bisness Media; 2005. 429 p.
6. Sonin A.S., Vasilevskaya A.S. Electrooptical crystals. Moscow: Atomizdat; 1971. 328 p. (In Russ.)
7. Shaskol'skaya M.P., ed. Acoustic crystals. Moscow: Nauka; 1981. 632 p. (In Russ.)
8. Jona F., Shirane G. Ferroelectric crystals. Macmillan; 1962. 402 p. (Russ. Transl.: Jona F., Shirane G. Segnetoelektricheskie kristally. Moscow: Mir; 1965. 555 p.)
9. Rez I.S., Poplavko Yu.M. Dielectrics: Basic properties and applications in electronics. Moscow: Radio i svyaz'; 1989. 288 p. (In Russ.)
10. Mason W.P. Piezoelectric crystals and their application to ultrasonics. New York, Van Nostrand; 1950. 448 p. (Russ. Transl.: Mason W.P. P'ezoelektricheskie kristally i ikh primenenie v ul'traakustike. Moscow:Izdatel'stvo inostrannoi literatury; 1952. 448 p.)
11. Sharapov V. Piezoelectric sensors. Moscow: Tekhnosfera; 2006. 628 p. (In Russ.)
12. Novik V.K., Gavrilova N.D., Fel'dman N.B. Pyroelectric converters. Moscow: Sovetskoe radio; 1979. 176 p. (In Russ.)
13. Physical encyclopedia. In 5 vol. Vol. 1. Aharonov– Bohm effect – Long lines. Moscow: Sovetskaya entsiklopediya; 1988. 704 p. (In Russ.)
14. Melancholin N.M. Methods for studying the optical properties of crystals. Moscow: Nauka; 1969. 155 p. (In Russ.)
15. Konstantinova A.F., Grechushnikov B.N., Bokut' B.V., Valyashko E.G. Optical properties of crystals. Minsk: Navuka i tekhnika; 1995. 303 p. (In Russ.)
16. Kizel' V.A., Burkov V.I. Gyrotropy of crystals. Moscow: Nauka; 1980. 304 p. (In Russ.)
17. Shubnikov A.V. Fundamentals of optical crystallography. Moscow: Izdatel'stvo Akademii nauk SSSR; 1959. 205 p. (In Russ.)
18. Shaskol'skaya M.P. Crystallography. Moscow: Vysshaya shkola; 1976. 391 p. (In Russ.)
19. Fedorov F.I. Theory of gyrotropy. Minsk: Nauka i tekhnika; 1976. 456 p. (In Russ.) 20. Wei A., Wang B., Qi H., Yuan D. Optical activity along the optical axis of crystals with ordered langasite structure. Crystal Research&Technology. 2006; 41(4): 371— 374. https://doi.org/10.1002/crat.200510589
20. Heimann R.B., Hengst M., Rossberg M., Bohm J. Giant optical rotation in piezoelectric crystals with calcium gallium germanate structure.Physica Status Solidi (a). 2003; 195(2): 468—474. https://doi.org/10.1002/pssa.200305950
21. Wang Z., Yuan D., Wei A., Qi H., Shi X., Xu D., Lu M. Growth and optical activities of Sr3TaGa3Si2O14 single crystals. Journal of Crystal Growth. 2004; 263(1-4): 389—393. https://doi.org/10.1016/j.jcrysgro.2003.11.098
22. Kozlova N.S., Goreeva Zh.A., Zabelina E.V. Testing quality assurance of single crystals and stock on their base. 2nd International Ural conference on measurements, UralCon. Chelyabinsk, Russia. 2017. IEEE; 2017. P. 15—22. https://doi.org/10.1109/URALCON.2017.8120681
23. Chandrasekhar S. Optical rotatory dispersion of crystals. Proceed. of the Royal Society A. Mathematical, Physical & Engineering Sciences; 1961. Vol. 259. P. 531—553. https://doi.org/10.1098/rspa.1961.0007
24. Jankmú V., Vyšín V. Interpretation of the optical activity of TeO2 and LiIO3. Optics Communications. 1971; 3(5): 308—309. https://doi.org/10.1016/0030-4018(71)90093-9
25. Herreros-Cedrés J., Hernández-Rodríguez C., Guerrero-Lemus R. Temperature-dependent gyration tensor of LiIO3 single crystal using the high-accuracy universal polarimeter. Journal of Applied Crystallography. 2002; 35(2): 228—232. https://doi.org/10.1107/S0021889802000778
26. Vyšín V., Jankú V. Note on the interpretation of the experimental data of the optical activity in crystals. Optics Communications. 1971; 3(5): 305—307. https://doi.org/10.1016/0030-4018(71)90092-7
27. Dimov T., Bunzarov Zh., Iliev I., Petkova P., Tzoukrovski Y. Dispersion of optical activity of magnesium sulfite hexahydrate single crystals. Physics: Conference Series. 2010; 253(1): 012080. https://doi.org/10.1088/1742-6596/253/1/012080
Supplementary files
Review
For citations:
Zabelina E.V., Shahin R., Kozlova N.S., Kasimova V.M. Determination of the polarization plane specific rotation in gyrotropic crystals of the middle category by the spectrophotometric method. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(3):181-189. (In Russ.) https://doi.org/10.17073/1609-3577j.met202307.543