Crystal structure of solid solutions 0.65BiFeO3–0.35Ba1-xSrxTiO3 in the region of morphotropic phase boundary
https://doi.org/10.17073/1609-3577j.met202307.547
EDN: WXBMDZ
Abstract
Solid solutions 0.65BiFeO3–0.35Ba1-xSrxTiO3 (0 ≤ x ≤ 1) with the compositions in the vicinity of the morphotropic phase boundary “rhombohedral-cubic” were synthesized by the Solid-state reaction method. The crystal structure and morphology of the ceramics 0.65BiFeO3–0.35Ba1-xSrxTiO3 were studied based on the data obtained by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, as well as energy-dispersive X-ray spectroscopy methods. It was determined that the chemical substitution of barium ions with strontium ions leads to a decrease in the magnitude of rhombohedral distortions, while the unit cell parameters decrease in the whole substitution concentration range. The solid solutions with x ≥ 0.25 are characterized by a single-phase structural state with a cubic unit cell; the average crystallite size decreases with increase of the dopant ions. The results of the structural studies carried out using Raman spectroscopy indicate the presence of rhombohedral distortions in the structure of all studied compounds, which is caused by the presence of nanosized clusters with rhombohedral symmetry. The obtained results made it possible to determine the sequence of the changes occurred in the phase state and the unit cell parameters in the region of the morphotropic phase boundary “rhombohedral -pseudocubic”; the concentration intervals corresponding to the single-phase and two-phase structural states of the compounds were determined. The region of concentration stability of the polar rhombohedral phase was clarified using the structural data obtained by local and microscopic research methods.
About the Authors
M. V. SilibinRussian Federation
1 Shokin Sq., Zelenograd, Moscow 124498
Maxim V. Silibin — Cand. Sci. (Eng.), Associate Professor, Institute of Advanced Materials and Technologies
P. A. Sklyar
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Polina A. Sklyar — Master of Science, Laboratory of Physics of Oxide Ferroelectrics
V. D. Zvivulko
Belarus
19 P. Brovka Str., Minsk 220072
Vadim D. Zvivulko — Cand. Sci. (Phys.-Math.), Head of the Laboratory of Optical Spectroscopy of Semiconductors
S. I. Latushko
Belarus
1 Shokin Sq., Zelenograd, Moscow 124498, Russian Federation;
19 P. Brovka Str., Minsk 220072, Republic of Belarus
Sergey I. Latushko — Junior Researcher
D. V. Zheludkevich
Belarus
1 Shokin Sq., Zelenograd, Moscow 124498, Russian Federation;
19 P. Brovka Str., Minsk 220072, Republic of Belarus
Dmitry V. Zheludkevich — Junior Researcher
D. V. Karpinsky
Belarus
1 Shokin Sq., Zelenograd, Moscow 124498, Russian Federation;
19 P. Brovka Str., Minsk 220072, Republic of Belarus
Dmitry V. Karpinsky — Dr. Sci. (Phys.-Math.), Head Laboratory of Oxide Materials
References
1. Banoth P., Narsaiah B.P., De Los Santos Valladares L., Kargin J., Kollu P. Single-phase BiFeO3 and BiFeO3–Fe2O3 nanocomposite photocatalysts for photodegradation of organic dye pollutants. Nanoscale Advances. 2023; 5(9): 2646–2656. https://doi.org/10.1039/d2na00881e
2. Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Advanced Materials. 2009;21(24):2463–2485. https://doi.org/10.1002/adma.200802849
3. Banoth P., Sohan A., Kandula C., Kollu P. Structural, dielectric, magnetic, and ferroelectric properties of bismuth ferrite (BiFeO3) synthesized by a solvothermal process using hexamethylenetetramine (HMTA) as precipitating agent. Ceramics International. 2022; 48(22): 32817–32826. http://dx.doi.org/10.2139/ssrn.4084619
4. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media. Physics-Uspekhi. 2012; 55(6): 557. https://doi.org/10.3367/UFNe.0182.201206b.0593
5. Chu Y.H., Martin L.W., Holcomb M.B., Ramesh R. Controlling magnetism with multiferroics. Materials Today. 2007; 10(10): 16–23. http://dx.doi.org/10.1016/S1369-7021(07)70241-9
6. Sando D., Barthélémy A., Bibes M. BiFeO3 epitaxial thin films and devices: past, present and future. Journal of Physics: Condensed Matter. 2014; 26(47): 473201. https://doi.org/10.1088/0953-8984/26/47/473201
7. Fischer P., Polomska M., Sosnowska I., Szymanski M. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics. 1980; 13(10): 1931. https://doi.org/10.1088/0022-3719/13/10/012
8. Phong P.T., Salazar-Kuri U., Van H.T., Khien N.V., Dang N.V., Tho P.T. Influence of isothermal structural transition on the magnetic properties of Cr doped Bi0.86Nd0.14FeO3 multiferroics. Journal of Alloys and Compounds. 2020; 823: 153887. https://doi.org/10.1016/j.jallcom.2020.153887
9. Tho P.T., Clements E.M., Kim D.H., Tran N., Osofsky M.S., Phan M.-H., Phan T.L., Lee B.W. Crystal structure and magnetic properties of Ti-doped Bi0.84La0.16FeO3 at morphotropic phase boundary. Journal of Alloys and Compounds. 2018; 741: 59–64. https://doi.org/10.1016/j.jallcom.2018.01.140
10. Karpinsky D.V., Troyanchuk I.O., Tovar M., Sikolenko V., Efimov V., Efimova E., Shur V.Ya., Kholkin A.L. Temperature and composition‐induced structural transitions in Bi1-xLa(Pr)xFeO3 ceramics. Journal of the American Ceramic Society. 2014; 97(8): 2631–2638. https://doi.org/10.1111/jace.12978
11. Karpinsky D.V., Troyanchuk I.O., Sikolenko V., Efimov V., Efimova E., Willinger M., Salak A.N., Kholkin A.L. Phase coexistence in Bi1-x(Pr)xFeO3 ceramics. Journal of Materials Science. 2014; 49(20): 6937–6943. https://doi.org/10.1007/s10853-014-8398-6
12. Khomchenko V.A., Troyanchuk I.O.,. Karpinsky D.V, Das S., Amaral V.S., Tovar M., Sikolenko V., Paixão J.A. Structural transitions and unusual magnetic behavior in Mn-doped Bi1-xLaxFeO3 perovskites. Journal of Applied Physics. 2012; 112(8): 084102. https://doi.org/10.1063/1.4759435
13. Kitagawa Y., Hiraoka Y., Honda T., Ishikura T., Nakamura H., Kimura T. Low-field magnetoelectric effect at room temperature. Nature Materials. 2010; 9(10): 797–802. https://doi.org/10.1038/nmat2826
14. Singh A., Pandey V., Kotnala R.K., Pandey D. Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Physical Review Letters. 2008; 101(24): 247602. https://doi.org/10.1103/PhysRevLett.101.247602
15. López I., Castaldini A., Cavallini A., Nogales E., Méndez B., Piqueras J. β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. Journal of Physics D: Applied Physics. 2014; 47(41): 415101. https://doi.org/10.1088/0022-3727/47/41/415101
16. Li Y., Sun N., Liu J., Hao X., Du J., Yang H., Li X., Cao M. Multifunctional BiFeO3 composites: absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations. Composites Science and Technology. 2018; 159: 240–250. https://doi.org/10.1016/j.compscitech.2018.02.014
17. Ca N.X., Lee M.Y., Nguyen H., Ba D.N., Tho P.T., Dang N.V., Tran N., Lee B.W., Ha L.T., Hue L.T., Chu X. Peculiar magnetism of Bi1-xDyxFeO3 ceramics at the morphotropic phase boundary. Journal of Alloys and Compounds. 2021; 869: 159331. https://doi.org/10.1016/j.jallcom.2021.159331
18. Karpinsky D.V., Troyanchuk I.O., Trukhanov A.V., Willinger M., Khomchenko V.A., Kholkin A.L., Sikolenko V., Maniecki T., Maniukiewicz W., Dubkov S.V., Silibin M.V. Structure and piezoelectric properties of Sm-doped BiFeO3 ceramics near the morphotropic phase boundary. Materials Research Bulletin. 2019; 112: 420–425. https://doi.org/10.1016/j.materresbull.2018.08.002
19. Pakalniškis A., Lukowiak A., Niaura G., Głuchowski P., Karpinsky D.V., Alikin D.O., Abramov A.S., Zhaludkevich A., Silibin M.V., Kholkin A.L., Skaudžius R., Strek W., Kareiv A. Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate-bismuth ferrite (BaTiO3–BiFeO3) solid solutions. Journal of Alloys and Compounds. 2020; 830: 154632. https://doi.org/10.1016/j.jallcom.2020.154632
20. Reetu R., Agarwal A., Sanghi S., Ashima A. Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. Journal of Applied Physics. 2011; 110(7): 073909. https://doi.org/10.1063/1.3646557
21. Liu H., Yang X. Structural, dielectric, and magnetic properties of BiFeO3–SrTiO3 solid solution ceramics. Ferroelectrics. 2016; 500(1): 310–317. https://doi.org/10.1080/00150193.2016.1230445
22. Tang L., Zhou X., Habib M., Zou J., Yuan X., Zhang Y., Zhang D. Phase structure and electrical properties of BiFeO3–BaTiO3 ceramics near the morphotropic phase boundary. Ceramics International. 2023; 49(24): 31965–31974. https://doi.org/10.1016/j.ceramint.2023.07.160
23. Kim S., Khanal G.P., Nam H.-W., Fujii I., Ueno S., Moriyoshi C., Kuroiwa Y., Wada S. Structural and electrical characteristics of potential candidate lead-free BiFeO3–BaTiO3. Journal of Applied Physics. 2017; 122(16): 164105. https://doi.org/10.1063/1.4999375
24. Hlinka J., Pokorny J., Karimi S., Reaney I.M. Angular dispersion of oblique phonon modes in from micro-Raman scattering. Physical Review B. 2011; 83(2): 020101. https://doi.org/10.1103/PhysRevB.83.020101
25. Wang Y., Nan C.-W. Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. Journal of Applied Physics. 2008; 103(11): 114104. https://doi.org/10.1063/1.2938080
26. Hermet P., Goffinet M., Kreisel J., Ghosez P. Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Physical Review B. 2007; 75(22): 220102 (R). https://doi.org/10.1103/PhysRevB.75.220102
Review
For citations:
Silibin M.V., Sklyar P.A., Zvivulko V.D., Latushko S.I., Zheludkevich D.V., Karpinsky D.V. Crystal structure of solid solutions 0.65BiFeO3–0.35Ba1-xSrxTiO3 in the region of morphotropic phase boundary. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(4):332-341. (In Russ.) https://doi.org/10.17073/1609-3577j.met202307.547. EDN: WXBMDZ