Activation processes during operation of an Ag/SnSe/Ge2Se3/W ion memristor with a self-directed current-conducting channel
https://doi.org/10.17073/1609-3577j.met202308.550
EDN: RDDACG
Abstract
In an Ag/SnSe/Ge2Se3/W ionic type memristor, the activation energy of two main processes responsible for its operation has been determined, namely: the activation energy for the formation of a conductive channel and the activation energy for memristor degradation. By measuring the current-voltage characteristics, the electrical conductivity of the memristor in low- and high-resistance operating modes was assessed. To determine the activation energy, the Arrhenius law and the provisions of the thermodynamics of irreversible processes were used, in particular the second postulate of Onsager, according to which the growth rate of the irreversible part of the entropy of a system tending to equilibrium is proportional to the sum of the products of the flows occurring in the system and the generalized thermodynamic force corresponding to each flow. The equilibrium state of the memristor was taken to be the state in which the memristor lost the ability to function as a resistive memory cell. The flow of Ag+ ions – electromigration was used as a substance flow. For the first process, the activation energy was 0.24 eV, and for the second, 1.16 eV. The different values of activation energy reflect the difference between the agglomeration mechanism of formation of a current-conducting channel, typical of an Ag/SnSe/Ge2Se3/W memristor, and the “standard” mechanism of substance transfer based on a group of point defects, which accompanies the process of memristor degradation.
Keywords
About the Authors
A. N. AleshinRussian Federation
7-5 Nagorny Passage, Moscow 117105
Andrey N. Aleshin — Dr. Sci. (Phys.-Math.), Chief Researcher, Laboratory for Basic Research of Low-Dimensional Electronic Systems in Nanoheterostructures of А3В5 Compounds
O. A. Ruban
Russian Federation
7-5 Nagorny Passage, Moscow 117105;
78 Vernadsky Ave., Moscow 119571
Oleg A. Ruban — Cand. Sci. (Eng.), Senior Researcher, Laboratory for Basic Research of Low-Dimensional Electronic Systems in Nanoheterostructures of А3В5 Compounds; Associate Professor of the Department of Physics and Technical Mechanics
References
1. Kim K.М., Jeong D.S., Hwang C.S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology. 2011; 22(25): 254002. https://doi.org/10.1088/0957-4484/22/25/254002
2. Kwon D.-H., Kim K.M., Jang J.H., Jeon J.M., Lee M.H., Kim G.H., Li X.-S., Park G.-S., Lee B., Han S., Kim M., Hwang C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology. 2010; 5(2): 148–153. https://doi.org/10.1038/NNANO.2009.456
3. Waser R., Dittmann R., Staikov G., Szot K. Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Advanced Materials. 2009; 21(25-26): 2632–2663. https://doi.org/10.1002/adma.200900375
4. Valov I., Waser R., Jameson J.R., Kozicki M.N. Electrochemical metallization memories –fundamentals, applications, prospects. Nanotechnology. 2011; 22(25): 254003. https://doi.org/10.1088/0957-4484/22/25/254003
5. Karpov V.G., Niraula D., Karpov I.V., Kotlyar R. Thermodynamics of phase transitions and bipolar filamentary switching in resistive random-access memory. Physical Review Applied. 2017; 8(2): 024028. https://doi.org/10.1103/PhysRevApplied.8.024028
6. Niraula D., Karpov V.J. Comprehensive numerical modeling of filamentary RRAM devices including voltage ramp-rate and cycle-to-cycle variations. Physical Review Applied. 2018; 124(17): 174502. https://doi.org/10.1063/1.5042789
7. Glasstone S., Laidler K., Eyring H. The theory of rate processes. N.Y.; London: McGraw-Hill Book Company, Inc.; 1941. 611 p. (Russ. Transl.: Glesston C., Leidler K., Eiring G. Teoriya absolyutnykh skorostei reaktsii. Moscow: Gosudarstvennoe izdatel'stvo inostrannoi literatury; 1948. 583 p.)
8. Bokshtein B.S., Bokshtein S.Z., Zhukhovitskii A.A. Thermodynamics and kinetics of diffusion in solids. Moscow: Metallurgiya; 1974. 280 p. (In Russ.)
9. Feltz A. Amorphous inorganic materials and glasses. N.Y.; Weinheim: VCH Publishers Inc.; 1993. 446 p.
10. Campbell K.A. Self-directed channel memristor for high temperature operation. Microelectronics Journal. 2017; 59(4): 10–14. http://dx.doi.org/10.1016/j.mejo.2016.11.006
11. Patent (US) 7151273B2. Campbell K.A., Moore J.T. Silver-selenide/chalcogenide glass stack for resistance variable memory. Appl.: 12.04.2002; publ.: 21.08.2003. URL: https://patents.google.com/patent/US7151273B2/en
12. Devasia A., Kurinec S., Campbell K.A., Raoux S. Influence of Sn migration on phase transition in GeTe and Ge2Se3 thin films. Applied Physics Letters. 2010; 96(5): 141908. https://doi.org/10.1063/1.3385781
13. Edwards A.H., Campbell K.A., Pineda A.C. Self-trapping of single and paired electrons in Ge2Se3. Journal of Physics Condensed Matter. 2012; 24(19): 195801. https://doi.org/10.1088/0953-8984/24/19/195801
14. Aleshin A.N., Ruban O.A. Temperature-frequency study of germanium selenide memristors with a self-directed current-conducting channel. Russian Microelectronics. 2022; 51(2): 59–67. https://doi.org/10.31857/S0544126922020028
15. Bokshtein B.S., Mendelev M.I., Pokhvisnev Yu.V. Physical chemistry: thermodynamics and kinetics Moscow: Izd. Dom MISiS; 2012, 258 p. (In Russ.)
16. Zolotukhin I.V., Kalinin Yu.E. Amorphous metallic alloys. Physics–Uspekhi. 1990;33(9):720–738. https://doi.org/10.1070/PU1990v033n09ABEH002628
17. Shvindlerman L.S., Gottstein G., Ivanov V.A., Molodov D.A., Kolesnikov D., Lojkowski W. Grain boundary excess free volume – direct thermodynamic measurement. Journal of Materials Science. 2006; 41(23): 7725–7729. https://doi.org/10.1007./s10853-006-0563-0
18. Aleshin A.N., Ruban O.A. Degradation processes in a memristor based on germanium selenide with a self-forming conductive channel. Technical Physics Letters. 2023; 49(4): 39–42. (In Russ.). https://doi.org/10.21883/PJTF.2023.04.54526.19423
19. Damaskin B.B., Petrii O.A. Introduction to electrochemical kinetics. Мoscow: Vysshaya shkola; 1975, 416 p. (In Russ.)
20. Aleshin A.N., Zenchenko N.V., Ruban O.A. Numerical simulation of the current-voltage characteristic of a bipolar memristor based on hafnium oxide. Technical Physics Letters. 2021; 47(13): 39–42. (In Russ.). https://doi.org/10.21883/PJTF.2021.13.51121.18415
21. Aleshin A.N., Zenchenko N.V., Ruban O.A. Simulation of TiN/HfO2/Pt memristor I–V curve for different conductive filament thickness. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021; 24(2): 79–87. (In Russ.). https://doi.org/10.17073/1609-3577-2021-2-79-87
22. Klinger L.M. Diffusion and heterophase fluctuations. Metallofizika. 1984; 6(5): 11–18. (In Russ.)
Review
For citations:
Aleshin A.N., Ruban O.A. Activation processes during operation of an Ag/SnSe/Ge2Se3/W ion memristor with a self-directed current-conducting channel. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(4):290-299. (In Russ.) https://doi.org/10.17073/1609-3577j.met202308.550. EDN: RDDACG