Quantum mechanical simulation of polarization switching in HfO2 crystals
https://doi.org/10.17073/1609-3577j.met202309.553
Abstract
The work is devoted to the study of the process of changing the polarization of hafnium oxide crystals in the orthorhombic phase associated with the gradual weakening of the polarization effects in FeRAM elements based on thin films of hafnium oxide HfO2. To solve the problem, quantum-mechanical calculations of the structure of orthorhombic hafnium oxide were carried out, a possible way of crystal rearrangement during a change in polarization upon application of voltage was identified, and its optimization was carried out using the elastic band method. The values of the polarization change and the energy barrier of the corresponding transition are obtained. A study of the stability of this transition has been carried out. The results of a series of computational experiments using high-performance computing systems of hybrid architecture based on the Center for Collective Use of the FRC IU RAS are presented. An analysis of the results shows that, despite the low energy barrier of the transition, the probability of a spontaneous change in polarization is low due to the impossibility of changing the polarization of an individual cell without taking into account the influence of the polarizations of neighboring cells.
Keywords
About the Authors
A. A. ZhuravlevRussian Federation
44-2 Vavilova Str., Moscow 119333
Andrey A. Zhuravlev — Junior Researcher
K. K. Abgaryan
Russian Federation
44-2 Vavilova Str., Moscow 119333
Karine K. Abgaryan — Dr. Sci. (Phys.-Math.), Chief Researcher, Head of Department
D. L. Reviznikov
Russian Federation
44-2 Vavilova Str., Moscow 119333
Dmitry L. Reviznikov — Dr. Sci. (Phys.-Math.), Professor, Leading Researcher
References
1. Shaw T.M., Trolier-McKinstry S., McIntyre P.C. The properties of ferroelectric films at small dimensions. Annual Review of Materials Science. 2000; 30(1): 263—298. https://doi.org/10.1146/annurev.matsci.30.1.263
2. Nuraje N., Su K. Perovskite ferroelectric nanomaterials. Nanoscale. 2013; 5(19): 8752—8780. https://doi.org/10.1039/C3NR02543H
3. Liu H., Yang X. A brief review on perovskite multiferroics. Ferroelectrics. 2017; 507(1): 69—85. https://doi.org/10.1080/00150193.2017.1283171
4. Gao W., Zhu Y., Wang Y., Yuan G., Liu J.-M. A review of flexible perovskite oxide ferroelectric films and their application. Journal of Materiomics. 2020; 6(1): 1—16. https://doi.org/10.1016/j.jmat.2019.11.001
5. Schroeder U., Park M.H., Mikolajick T., Hwang C.S. The fundamentals and applications of ferroelectric HfO2. Nature Reviews Materials. 2022; 7(8): 653—669. https://doi.org/10.1038/s41578-022-00431-2
6. Park M.H., Lee Y.H., Mikolajick T., Schroeder U., Hwang C.S. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Communications. 2018; 8(3): 795—808. https://doi.org/10.1557/mrc.2018.175
7. Mikolajick T., Müller S., Schenk T., Yurchuk E., Slesazeck S., Schröder U., Dünkel S., van Bentum R., Kolodinski S., Polakowski P., Müller J. Doped hafnium oxide — an enabler for ferroelectric field effect transistors. Advances in Science and Technology. 2014; 95: 136—145. https://doi.org/10.4028/www.scientific.net/ast.95.136
8. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., Dal Corso A., Fabris S., Fratesi G., de Gironcoli S., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin-Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A.P., Smogunov A., Umari P., Wentzcovitch R.M. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter. 2009; 21(39): 395502. https://doi.org/10.1088/0953-8984/21/39/395502
9. Dal Corso A. Pseudopotentials periodic table: From H to Pu. Computational Materials Science. 2014; 95: 337—350. https://doi.org/10.1016/j.commatsci.2014.07.043
10. Henkelman G., Uberuaga B.P., Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics. 2000; 113(22): 9901—9904. https://doi.org/10.1063/1.1329672
11. Resta R. Polarization as a Berry Phase. Europhysics News. 1997; 28(1): 18—20. https://doi.org/10.1007/s00770-997-0018-4
Review
For citations:
Zhuravlev A.A., Abgaryan K.K., Reviznikov D.L. Quantum mechanical simulation of polarization switching in HfO2 crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(3):198-203. (In Russ.) https://doi.org/10.17073/1609-3577j.met202309.553