Investigation of the cobalt ions diffusion processes in calcium orthovanadate crystals
https://doi.org/10.17073/1609-3577j.met202309.555
EDN: JVTCYN
Abstract
In this work, the high-temperature diffusion doping method was used for introduction of active cobalt ions into calcium orthovanadate Ca3(VO4)2crystals. Experimental samples were made from a nominally pure CVO single crystal obtained by the Czochralski method. The high-temperature diffusion conditions have been optimized to obtain doped crystals of optical quality during annealing in open and closed zones. Diffusion coefficients of cobalt ions (D) were calculated for various conditions: annealing time 24 - 48 hours; temperature range 1150-1300°C; diffusants - oxide compounds of calcium, cobalt and vanadium: Co3O4, Ca10Co0.5(VO4)7 and Ca3(VO4)2:2wt.%Co3O4; diffusion direction is parallel or perpendicular to the CVO crystal optical axis. The calculated values of the diffusion coefficient varied between 2.09·10-8—1.58·10-7 cm2/s. The activation energy of the diffusion process was determined to be 2.58±0.5 and 2.63±0.5 eV for the [001] and [100] directions, respectively. The maximum cobalt concentration in doped CVO crystals was 2·1020 cm–3. The absorption spectrum of diffusion-doped Ca3(VO4)2:Co samples demonstrates the presence of absorption bands characteristic for Co2+ and Co3+ ions. It was shown that the intensity ratio of the characteristic absorption bands varies depending on the crystal doping method. The optical anisotropy of the crystal increases with dopant concentration increase.
Keywords
About the Authors
I. S. VoroninaRussian Federation
38 Vavilov Str., Moscow 119991
Irina S. Voronina — Cand. Sci. (Eng.), Senior Researcher
E. E. Dunaeva
Russian Federation
38 Vavilov Str., Moscow 119991
Elizaveta E. Dunaeva — Cand. Sci. (Eng.), Senior Researcher
L. I. Ivleva
Russian Federation
38 Vavilov Str., Moscow 119991
Liudmila I. Ivleva —Dr. Sci. (Eng.), Chief Researcher,
L. D. Iskhakova
Russian Federation
38 Vavilov Str., Moscow 119991
Liudmila D. Iskhakova — Cand. Sci. (Chem.), Senior Researcher,
A. G. Papashvili
Russian Federation
38 Vavilov Str., Moscow 119991
Alexandr G. Papashvili — Researcher
M. E. Doroshenko
Russian Federation
38 Vavilov Str., Moscow 119991
Maxim E. Doroshenko — Cand. Sci. (Phys.-Math.), Head of Department
References
1. Brixner L.H., Flournoy P.A. Calcium orthovanadate Ca3(VO4)2 - a new laser host crystal. Journal of the Electrochemical Society. 1965;112(3):303–308. https://doi.org/10.1149/1.2423528 L. H. Brixner, P. A. Flournoy. Calcium Orthovanadate Ca3 (VO4)2 - A New laser host crystal. Journal of the Electrochemical Society. 1965;112(3):303–308. https://doi.org/10.1149/1.2423528
2. Wu H.-F., Yuan F., Sun Sh., Huang Y., Zhang L., Lin Zh., Wang G. Growth and spectral characteristics of a new promising stoichiometric laser crystal: Ca9Yb(VO4)7. Journal of Rare Earths. 2015;33(3):239–243. https://doi.org/10.1016/S1002-0721(14)60409-9
3. Kosmyna M.B., Nazarenko B.P., Puzikov V.M., Shekhovtsov A.N., Paszkowicz W., Behrooz A., Romanowski P., Yasukevich A.S., Kuleshov N.V., Demesh M.P., Wierzchowski W., Wieteska K., Paulmann C. Ca10Li(VO4)7:Nd3+, a promising laser material: growth, structure and spectral characteristics of a Czochralski-grown single crystal. Journal of Crystal Growth. 2016;445:101–107. https://doi.org/10.1016/j.jcrysgro.2016.04.002
4. Ivleva L.I., Dunaeva E.E., Voronina I.S., Doroshenko M.E., Papashvili A.G. Ca3(VO4)2:Tm3+ - A new crystalline medium for 2-μm lasers. Journal of Crystal Growth. 2018;501:18–21. https://doi.org/10.1016/j.jcrysgro.2018.08.019
5. Ivleva L.I., Dunaeva., E.E., Voronina I.S., Doroshenko M.E., Papashvili A.G., Sulc J., Kratochvíl J., Jelinkova H. Impact of Tm3+/Ho3+ co-doping on spectroscopic and laser properties of Ca3(VO4)2 single crystal. Journal of Crystal Growth. 2019;513:10–14. https://doi.org/10.1016/j.jcrysgro.2019.02.054
6. Frank M., Smetanin S.N., Jelínek Jr.M., Vyhlídal D., Ivleva L.I., Dunaeva E.E., Voronina I.S., Shukshin V.E., Zverev P.G., Kubeček V. Synchronously-pumped, all-solid-state, picosecond Raman laser at 1169 and 1222 nm on single and combined Raman modes in a Ca3(VO4)2 crystal with 30-times pulse shortening down to 1.2 ps. Laser Physics Letters. 2020;17(11):115402. https://doi.org/10.1088/1612-202X/abbedf
7. Glass A.M., Abrahams S.C., Ballman A.A., Loiacono G. Calcium orthovanadate, Ca3(VO4)2 - A new high temperature ferroelectric. Ferroelectrics. 1977;17(1):579–582. https://doi.org/10.1080/00150197808236782
8. Voronina I.S., Voronov V.V., Dunaeva E.E., Iskhakova L.D., Papashvili A.G., Doroshenko M.E., Ivleva L.I. Growth and properties of manganese doped Ca3(VO4)2 single crystals. Journal of Crystal Growth. 2021;555:125965. https://doi.org/10.1016/j.jcrysgro.2020.125965
9. Voronina I.S., Dunaeva E.E., Papashvili A.G., Doroshenko M.E., Ivleva L.I. Modification of calcium orthovanadate single crystal due to cobalt doping. Journal of Crystal Growth. 2023;615(3):127242. https://doi.org/10.1016/j.jcrysgro.2023.127242
10. Bracht H. Diffusion mechanisms and intrinsic point-defect properties in silicon. MRS Bulletin. 2000;25(6):22−27. https://doi.org/10.1557/mrs2000.94
11. Kozlov V.A., Kozlovski V.V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. Semiconductors. 2001;35:735–761. https://doi.org/10.1134/1.1385708
12. Mirov S.B., Fedorov V.V., Martyshkin D.V., Moskalev I.S., Mirov M.S., Gapontsev V.P. Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers [Invited]. Optical Materials Express. 2011;1(5):898–910. https://doi.org/10.1364/OME.1.000898
13. Vaksman Yu.F., Pavlov V.V., Nitsuk Yu.A., Purtov Yu.N., Nasibov A.S., Shapkin P.V. Optical absorption and chromium diffusion in ZnSe single crystals. Semiconductors. 2005;39(4):377–380. https://doi.org/10.1134/1.1900247
14. Rodin S.A. Diffusion doping of CVD-ZnSe with Cr2+ ions. Diss. Cand. Sci. (Chem.). Nizhnii Novgorod; 2018. 129 p. (In Russ.)
15. Sorokina T. Cr2+-doped II-VI materials for lasers and nonlinear optics. Optical Materials. 2004;26(4):395–412. https://doi.org/10.1016/j.optmat.2003.12.025
16. Schmidt R.V., Kaminow I.P. Metal-diffused optical waveguides in LiNbO3. Applied Physics Letters. 1974;25(8):458–460. https://doi.org/10.1063/1.1655547
17. Baumann I., Brinkmann R., Dinand M., Sohler W., Beckers L., Buchal C., Fleuster M., Holzbrecher H., Paulus H., Müller K.-H., Gog T., Materlik G., Witte O., Stolz H., von der Osten W. Erbium incorporation in LiNbO3 by diffusion-doping. Applied Physics A. 1996;64:33–44. https://doi.org/10.1007/s003390050441
18. Jiménez-Melendo M., Haneda H., Nozawa H. Ytterbium cation diffusion in yttrium aluminum garnet (YAG) - Implications for creep mechanisms. Journal of American Ceramic Society. 2001;84(10):2356–2360. https://doi.org/10.1111/j.1151-2916.2001.tb01014.x
19. Hettrick S.J., Wilkinson J.S., Shepherd D.P. Neodymium and gadolinium diffusion in yttrium vanadate. Journal of the Optical Society of America B. 2002;19(1):123–124. https://doi.org/10.1364/JOSAB.19.000033
20. Pavlov P.V., Khokhlov A.F. Solid state physics. Moscow: Vysshaya shkola; 2000. 493 p. (In Russ.)
21. Gopal R., Calvo C. The structure of Ca3(VO4)2. Zeitschrift für Kristallographie - Crystalline Materials. 1973;137(1):67–85. https://doi.org/10.1524/zkri.1973.137.1.67
22. Lazoryak B.I. Design of inorganic compounds with tetrahedral anions. Russian Chemical Review. 1996;65(4):287–305. https://doi.org/10.1070/RC1996v065n04ABEH000211
23. Leonidov I.A., Leonidova O.N., Surat L.L., Samigullina R. Ca3(VO4)2–LaVO4 cation conductors. Inorganic Materials. 2003;39(6):616–620. https://doi.org/10.1023/A:1024057405145
24. Rahimi Mosafer H., Paszkowicz W., Minikayev R., Kozłowski M., Diduszko R., Berkowski M. The crystal structure and thermal expansion of novel substitutionally disordered Ca10TM0.5(VO4)7 (TM = Co, Cu) orthovanadates. Dalton Transactions. 2021;50(41):14762–14773. https://doi.org/10.1039/D1DT02446A
25. Galakhov F.Ya. (ed.). State diagrams of refractory oxide systems. Vol. 5. Dual systems. In 4 parts. Leningrad: Nauka; 1987. Part 3. 287 p. (In Russ.)
26. Tolkacheva A.S., Shkerin S.N., Nikonov A.V., Pershina S.V., Khavlyuk P.D., Leonidov I.I. Electrical and thermal properties of Ca5Mg4−xCox(VO4)6 (0 ≤ x ≤ 4), a promising electrode material. Materials Letters. 2021;305:130811. https://doi.org/10.1016/j.matlet.2021.130811
27. Voronina I.S., Dunaeva E.E., Papashvili A.G., Iskhakova L.D., Doroshenko M.E., Ivleva L.I. High-temperature diffusion doping as a method of fabrication of Ca3(VO4)2:Mn single crystals. Journal of Crystal Growth. 2021;563(3):126104. https://doi.org/10.1016/j.jcrysgro.2021.126104
28. Solov'ev S.D., Korablev G.A., Kodolov V.I. Calculation of activation energy for volumetric diffusion and self-diffusion of elements in solids. Chemical Physics and Mesoscopy. 2005;7(1):31–40. (In Russ.)
29. Shannon R.D. Revised effective ionic radii and systematic studies of unteratomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Foundations of Crystallography. 1976; 32(SEP1): 751–767. https://doi.org/10.1107/S0567739476001551
Review
For citations:
Voronina I.S., Dunaeva E.E., Ivleva L.I., Iskhakova L.D., Papashvili A.G., Doroshenko M.E. Investigation of the cobalt ions diffusion processes in calcium orthovanadate crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(4):261-271. (In Russ.) https://doi.org/10.17073/1609-3577j.met202309.555. EDN: JVTCYN