Preview

Известия высших учебных заведений. Материалы электронной техники

Расширенный поиск

Металлорганические каркасные структуры и композиты на их основе: особенности строения, методы синтеза, электрохимические свойства и перспективы (обзор)

https://doi.org/10.17073/1609-3577j.met202309.557

Аннотация

Представлен обзор различных видов металлорганических каркасов (МОК) и особенностей их структуры, представлена классификация. Рассмотрены основные методы и подходы к синтезу как самих МОК, так и композиционных материалов на их основе.

Структура МОК представляет собой регулярную трехмерную решетку, образованную органическими линкерами и металлическими кластерами. На примере анализа литературных данных по синтезу МОК и изучению их структуры показано, что характер взаимосвязей и типы металлов могут существенным образом влиять на пространственное построение и размер кристаллов МОК: они могут быть нано-, микро- и мезоразмерными, плотными и пористыми, объемными и слоистыми. Это все определяет их широкий спектр свойств и возможности применения.

Рассмотрены перспективы и способы управления и контроля формы кристаллов, их размера и пространственным взаимосвязям между органическими компонентами и ионами металлов.

Основное внимание уделено цеолитоподобным каркасам (ZIF) как наиболее интересным с точки зрения строения, синтеза и применения в качестве материалов для электрохимических источников тока. Рассмотрены возможности модификации и контроля свойств этих МОК и композиционных материалов на их основе за счет управления составом, создания пористых структур и внедрения в них примесей, в том числе и с магнитными свойствами. Представлены различные варианты синтеза сложных композиционных материалов путем контролируемого пиролиза МОК как простого и масштабируемого процесса. Продемонстрировано влияние условий термообработки на конечные свойства, а также перспективы использования таких материалов в приложении электрохимии.

В качестве одного из вариантов изменения свойств МОК и композиционных материалов на их основе представлен подход, основанный на легировании МОК со структурой ZIF-67 другим металлом. В частности, научным коллективом авторов реализован синтез кобальтовых МОК, в которых кобальт частично замещен марганцем на стадии синтеза. Помимо этого, использована простая методика синтеза путем соосаждения в водном растворе, модифицированная ультразвуковым воздействием, которое сокращает продолжительность синтеза. Электрохимические исследования показали, что удельная электрохимическая емкость электродов из пиролизованных МОК с частичным замещением кобальта на марганец значительно выше, чем у материалов без марганца. С увеличением содержания марганца в МОК возрастает как удельная емкость, так и плотность энергии. Легирование МОК марганцем позволяет значительно (от 100 до 298 Ф/г при плотности тока 0,25 А/г) улучшить электрохимические характеристики материалов электродов для гибридных суперконденсаторов на их основе. Полученные авторами результаты свидетельствуют о том, что замещение кобальта марганцем является эффективным способом повышения электрохимических характеристик МОК.

Продемонстрировано, что разработка новых подходов к дизайну композитных материалов на основе МОК, а также исследование физико-химических закономерностей взаимодействия этих материалов с различного рода носителями является актуальной задачей.

Об авторах

Д. Г. Муратов
Институт нефтехимического синтеза им. А. В. Топчиева Российской академии наук; Национальный исследовательский технологический университет «МИСИС»
Россия

Ленинский просп., д. 29, Москва, 119991;

Ленинский просп., д. 4, стр. 1, Москва, 119049

Муратов Дмитрий Геннадиевич — канд. техн. наук, ведущий научный сотрудник (1), доцент (2)



Л. В. Кожитов
Национальный исследовательский технологический университет «МИСИС»
Россия

Ленинский просп., д. 4, стр. 1, Москва, 119049

Кожитов Лев Васильевич — доктор техн. наук, профессор



И. В. Запороцкова
Волгоградский государственный университет
Россия

Университетский просп., д. 100, Волгоград, 400062

Запороцкова Ирина Владимировна — доктор физ.-мат. наук, профессор, директор института приоритетных технологий



А. В. Попкова
АО «НИИ НПО «ЛУЧ»
Россия

ул. Железнодорожная, д. 24, Подольск, 142103

Попкова Алёна Васильевна — старший научный сотрудник



В. В. Слепцов
Московский авиационный институт
Россия

Волоколамское ш., д. 4, Москва, 125993

Слепцов Владимир Владимирович — доктор техн. наук, профессор, зав. кафедрой радиоэлектроники, телекоммуникаций и нанотехнологий



А. В. Зорин
Национальный исследовательский технологический университет «МИСИС»
Россия

Ленинский просп., д. 4, стр. 1, Москва, 119049

Зорин Артём Викторович — аспирант, кафедра технологий
материалов электроники



Список литературы

1. Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487—1505. https://doi.org/10.1039/b815583f

2. He T., Kong X.J., Li J.R. Chemically stable metal-organic frameworks: rational construction and application expansion. Accounts of Chemical Research. 2021; 54(15): 3083—3094. https://doi.org/10.1021/acs.accounts.1c00280

3. He Y. Zhou W., Qian G., Chen B. Methane storage in metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5657—5678. https://doi.org/10.1039/c4cs00032c

4. Jiang Z., Xue W., Huang H., Zhu H., Sun Y., Zhong Ch. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal. 2023; 454(37): 140093. https://doi.org/10.1016/j.cej.2022.140093

5. Zhao D.L. Feng F., Shen L., Huang Zh., Zhao Q., Lin H., Chung T.-Sh. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal. 2022; 454(6191): 140447. https://doi.org/10.1016/j.cej.2022.140447

6. Gao Q. F., Jiang T.-L., Li W.-Zh., Tan D.-F., Zhang X.-H., Pang J.-Y., Zhang Sh.-H. Porous and stable Zn-series metal-organic frameworks as efficient catalysts for grafting wood nanofibers with polycaprolactone via a copolymerization approach. Inorganic Chemistry. 2023; 62(8): 3464—3473. https://doi.org/10.1021/acs.inorgchem.2c03721

7. Mukoyoshi M., Kitagawa H. Nanoparticle/metal-organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications. 2022; 58(77): 10757—10767. https://doi.org/10.1039/D2CC03233C

8. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Metal-organic framework materials as chemical sensors. Chemical Reviews. 2012; 112(2): 1105—1125. https://doi.org/10.1021/cr200324t

9. Xuan X., Wang M., Manickam S., Boczkaj Gr., Yoon J.-Y., Sun X. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms. Frontiers in Bioengineering and Biotechnology. 2022; 10: 906374. https://doi.org/10.3389/fbioe.2022.906374

10. Horcajada P., Chalati T., Serre Ch., Gillet B., Sebrie C., Baati T., Eubank J.F., Heurtaux D., Clayette P., Kreuz Ch., Chang J.-S., Kyu H.Y., Marsaud V., Bories Ph.-Nh., Cynober L., Gil S., Férey G., Couvreur P., Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials. 2010; 9(2): 172—178. https://doi.org/10.1038/nmat2608

11. Xu Z., Zhen W., McCleary C., Luo T., Jiang X., Peng Ch., Weichselbaum R.R., Lin W. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. Journal of the American Chemical Society. 2023; 145(34): 18698—18704. https://doi.org/10.1021/jacs.3c04602

12. Mu J., Guo Z., Zhao Y., Che H., Yang H., Zhang Zh., Zhang X., Wang Y., Mu J. ZIF-67/rGO/NiPc composite electrode material for high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics. 2022; 33(22): 17733—17744. https://doi.org/10.1007/s10854-022-08636-5

13. Ahmed F.M., Ateia E.E., El-Dek S., Abd El-Kader Sh.M., Samy A. Silver-substituted cobalt zeolite imidazole framework on reduced graphene oxide nanosheets as a novel electrode for supercapacitors. Journal of Energy Storage. 2022; 55(5): 105443. https://doi.org/10.1016/j.est.2022.105443

14. Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588

15. Ramesh S., Karuppasamy K., Vikraman Dh., Yadav H.M., Kim H.-S., Sivasamy A., Kim H.S. Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International. 2022; 48(19): 29102—29110. https://doi.org/10.1016/j.ceramint.2022.05.048

16. Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(Pt B): 108961. https://doi.org/10.1016/j.est.2023.108961

17. Chettiannan B., Kumar A., Arumugam G., Shajahan Sh., Abu Haija M., Rajendran R. Incorporation of α-MnO2 nanoflowers into zinc-terephthalate metal-organic frameworks for high-performance asymmetric supercapacitors. ACS Omega. 2023; 8(7): 6982—6993. https://doi.org/10.1021/acsomega.2c07808

18. Gurav S.R., Sawant S.A., Chodankar G.R., Shembade U.V., Moholkar A.V., Sonkawade R.G. Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors. Electrochimica Acta. 2023; 467: 143027. https://doi.org/10.1016/j.electacta.2023.143027

19. Ensafi A.A., Fazel R., Rezaei B., Hu J.-S. Electrochemical properties of modified poly (4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors. Fuel. 2022; 324(7482): 124724. https://doi.org/10.1016/j.fuel.2022.124724

20. Zeng Q. Wang L., Li X., You W., Zhang J., Liú X., Wang M., Che R. Double ligand MOF-derived pomegranate-like Ni@ C microspheres as high-performance microwave absorber. Applied Surface Science. 2021; 538(27): 148051. https://doi.org/10.1016/j.apsusc.2020.148051

21. Li X., Huang Ch., Wang Z., Zhen X., Lu W. Enhanced electromagnetic wave absorption of layered FeCo@ carbon nanocomposites with a low filler loading. Journal of Alloys and Compounds. 2021; 879: 160465. https://doi.org/10.1016/j.jallcom.2021.160465

22. Huang K., Wang B., Guo S., Li K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition. 2018; 130(42): 13892—13896. https://doi.org/10.1002/ange.201809872

23. Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373—8387. https://doi.org/10.1039/D0SC01297A

24. Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130—2144. https://doi.org/10.1039/C7CS00782E

25. Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783—2828. https://doi.org/10.1039/C8CS00829A

26. Phan A., Doonan Ch.J., Uribe-Romo F.J., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58—67. https://doi.org/10.1021/ar900116g

27. Pan Y., Liu , Zeng G., Zhao L., Lai Zh. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications. 2011; 47(7): 2071—2073. https://doi.org/10.1039/c0cc05002d

28. Mahdavi H., Eden N.T., Doherty C.M., Acharya D., Smith S.J.D., Mulet X., Hill M.R. Underlying polar and nonpolar modification MOF-based factors that influence permanent porosity in porous liquids. ACS Applied Materials & Interfaces. 2022; 14(20): 23392—23399. https://doi.org/10.1021/acsami.2c03082

29. Li M., Yuan G., Zeng Y., Peng H., Yang Y., Liao J., Yang J., Liu N. Efficient removal of Co (II) from aqueous solution by flexible metal-organic framework membranes. Journal of Molecular Liquids. 2021; 324(2017): 114718. https://doi.org/10.1016/j.molliq.2020.114718

30. Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yagh O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939—943. https://doi.org/10.1126/science.1152516

31. Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2022; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187

32. Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360—5367. https://doi.org/10.1002/adfm.201502253

33. Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220—223. https://doi.org/10.1016/j.matlet.2012.05.077

34. Dang S., Zhu Q.-L., Xu Q. Nanomaterials derived from metal-organic frameworks. Nature Reviews Materials. 2017; 3(1): 17075. https://doi.org/10.1038/natrevmats.2017.75

35. Cao X., Tan Ch., Sindoro M., Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews. 2017; 46(10): 2660—2677. https://doi.org/10.1039/C6CS00426A

36. Du Y., Xu Y., Zhou W., Yu Y., Ma X., Liu F., Xu J., Zhu Y. MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage. Green Energy & Environment. 2021; 6(5): 703—714. https://doi.org/10.1016/j.gee.2020.06.010

37. Kyeremateng N.A., Brousse T., Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology. 2017; 12: 7—15. https://doi.org/10.1038/nnano.2016.196

38. Gogotsi Y., Simon P. True performance metrics in electrochemical energy storage. Science. 2011; 334(6058): 917—918. https://doi.org/10.1126/science.1213003

39. Feng D., Lei T., Lukatskaya M.R., Park J., Huang Zh., Lee M., Shaw L., Chen Sh., Yakovenko A.A., Kulkarni A., Xiao J., Fredrickson K., Tok J.B., Zou X., Cui Y., Bao Zh. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy. 2018; 3(1): 30—36. https://doi.org/10.1038/s41560-017-0044-5

40. Guo W., Yu Ch., Li Sh., Song X., Huang H., Han X., Wang Zh., Liu Zh., Yu J., Tan X., Qiu J.Sh. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Advanced Materials. 2019; 31(28): 1901241. https://doi.org/10.1002/adma.201901241

41. Yaqoob L., Tayyaba N., Iqbal N. An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research. 2022; 46(4): 3939—3982. https://doi.org/10.1002/er.7491

42. Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040—18048. https://doi.org/10.1007/s10854-017-7747-z

43. Li X., Ding S., Xiao X., Shao J., Wei J., Pang H., Yu Y. N, S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A. 2017; 5(25): 12774—12781. https://doi.org/10.1039/C7TA03004E

44. Zhang Y.Z., Wang Y., Xie Y.-L., Cheng T., Lai W., Pang H., Huang W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014; 6(23): 14354—14359. https://doi.org/10.1039/c4nr04782f

45. Zhang Sh., Hu R., Dai P., Yu X., Ding Z. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Applied Surface Science. 2016; 396: 994—999. https://doi.org/10.1016/j.apsusc.2016.11.074

46. An C., Zhang Y., Guo H., Wang Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances. 2019; 1(12): 4644—4658. https://doi.org/10.1039/C9NA00543A

47. Chen X., Cheng M., Chen D., Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces. 2016; 8(6): 3892—3900. https://doi.org/10.1021/acsami.5b10785

48. Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О. Тонкопленочные нанотехнологии для создания источников энергоснабжения. Вестник машиностроения. 2021; (2): 65—67. https://doi.org/10.36652/0042-4633-2021-2-65-67

49. Zhou L., Zhuang Z., Zhao H., Lin M., Zhao D., Mai L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Advanced Materials. 2017; 29(20): 1602914. https://doi.org/10.1002/adma.201602914

50. Zhao Y., Liu J., Horn M., Motta N., Hu M., Li Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Science China Materials. 2018; 61(2): 159—184. https://doi.org/10.1007/s40843-017-9153-x

51. Shi X., Zheng Sh., Wu Zh.-Sh., Bao X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry. 2018; 27(1): 25—42. https://doi.org/10.1016/j.jechem.2017.09.034

52. Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15—38. https://doi.org/10.1016/j.ccr.2018.04.018

53. Zhong C., Yida D., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015; 44(21): 7484—7539. https://doi.org/10.1039/c5cs00303b

54. Ghadimi A.M., Ghasemi Sh., Omrani A., Mousavi F. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications. Energy & Fuels. 2023; 37(4): 3121—3133. https://doi.org/10.1021/acs.energyfuels.2c03040

55. Akinwolemiwa B., Peng C., Chen G.Z. Redox electrolytes in supercapacitors. Journal of the Electrochemical Society. 2015; 162(5): A5054—А5059. https://doi.org/10.1149/2.0111505JES

56. Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(B): 108961. https://doi.org/10.1016/j.est.2023.108961

57. Zhang L.L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009; 38(9): 2520—2531. https://doi.org/10.1039/b813846j

58. Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359—367. https://doi.org/10.1038/35104644

59. Conway B.E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 698 p.

60. Sundriyal S., Shrivastav V., Kaur H., Mishra S., Deep A. High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega. 2018; 3(12): 17348—17358. https://doi.org/10.1021/acsomega.8b02065

61. Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive? Journal of the Electrochemical Society. 2015; 162(5): A5185—А5189. https://doi.org/10.1149/2.0201505jes

62. Liang C., Wang Sh., Sha Sh., Lv S., Wang G., Wang B., Li Q., Yu J., Xu X., Zhang L. Novel semiconductor materials for advanced supercapacitors. Journal of Materials Chemistry C. 2023; 11(13): 4288—4317. https://doi.org/10.1039/D2TC04816G

63. Isaeva V.I., Tarasov A.L., Tkachenko O.P., Kapustin G.I., Mishin I.V., Solov’eva S.E., Kustov L. 1,3-Cyclohexadiene hydrogenation in the presence of a palladium-containing catalytic system based on an MOF-5/calixarene composite. Kinetics and Catalysis. 2011; 52(1): 94—97. https://doi.org/10.1134/S0023158411010058

64. Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers. Angewandte Chemie International Edition. 2004; 43(18): 2334—2375. https://doi.org/10.1002/anie.200300610

65. Исаева В.И., Тарасов А.Л., Ямпольский Ю.П., Елисеев О.Л., Казанцев Р.В., Кустов Л.М. Синтез в СВЧ-поле нанокристаллов металлорганических каркасов MIL. В: Труды IV Всерос. конф. по органической химии, 22–27 ноября 2015. Тезисы устного доклада. М.: ФГБУ Институт органической химии им. Н.Д. Зелинского РАН; 2015. 309 с.

66. Monni N., Baldoví J.J., García Lopez V., Oggianu M., Cadoni E., Quochi F., Clemente M., Mercuri M.L., Coronado E. Reversible tuning of luminescence and magnetism in a structurally flexible erbium-anilato MOF. Chemical Science. 2022; 13(25): 7419—7428. https://doi.org/10.1039/D2SC00769J

67. Papaefstathiou G.S., MacGillivray L.R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coordination Chemistry Reviews. 2003; 246(1–2): 169—184. https://doi.org/10.1016/S0010-8545(03)00122-X

68. Kole G.K., Vittal J.J. Isomerization of cyclobutane ligands in the solid state and solution. Journal of the Indian Chemical Society. 2022; 99(9): 100630. https://doi.org/10.1016/j.jics.2022.100630

69. Xu Q., Chen J., Wang Y., Wang D., Xu X., Xia J., Zhang K.-L., Zhou X., Fan W., Wang Z., Hou Ch., Sun D. Guest-stimulated nonplanar porphyrins in flexible metal-organic frameworks. Small. 2023; 19(44): е2304771. https://doi.org/10.1002/smll.202304771

70. Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J. Reticular synthesis and the design of new materials. Nature. 2003; 423(6941): 705—714. https://doi.org/10.1038/nature01650

71. Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1257—1283. https://doi.org/10.1039/b817735j

72. Hagrman P.J., Hagrman D., Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angewandte Chemie International Edition. 1999; 38(18): 2638—2684. https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2638::aid-anie2638>3.0.co;2-4

73. Lu Y., Zhong H., Jian L., Dominic A.M., Hu Y., Gao Zh., Jiao Y., Wu M., Qi H., Huang Ch., Wayment L.J., Kaiser U., Spiecker E., Weidinger I.M., Zhang W., Feng X., Dong R. sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angewandte Chemie International Edition. 2022; 61(39): e202208163. https://doi.org/10.1002/anie.202208163

74. Liu Q., Wang N., Caro J., Huang A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society. 2013; 135(47): 17679–17682. https://doi.org/10.1021/ja4080562

75. Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376—392. https://doi.org/1010.1080/10408347.2019.1642732

76. Zhang X., Wang N., Li H., Wang Zh., Wang H. IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Separation and Purification Technology. 2023; 318: 123908. https://doi.org/10.1016/j.seppur.2023.123908

77. Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/10.1080/10408347.2019.1642732

78. Mohtasham H., Rostami M., Gholipour B., Sorouri A.M., Ehrlich H., Ganjali M.R., Rostamnia S., Rahimi-Nasrabadi M., Salimi A., Luque R. Nano-architecture of MOF (ZIF-67)-based Co3O4 NPs@ N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater. Chemosphere. 2023; 310: 136625. https://doi.org/10.1016/j.chemosphere.2022.136625

79. Kesanli B., Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coordination Chemistry Reviews. 2003; 246(1-2): 305—326. https://doi.org/10.1016/j.cct.2003.08.004

80. Zorainy M.Y., Alalm M.G., Kaliaguine S., Boffito D.C. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A. 2021; 9(39): 22159–22217. https://doi.org/10.1039/D1TA06238G

81. Behera N., Duan J., Jin W., Kitagawa S. The chemistry and applications of flexible porous coordination polymers. EnergyChem. 2021; 3(6): 100067. https://doi.org/10.1016/j.enchem.2021.100067

82. Ahmadijokani F., Molavi H., Rezakazemi M., Tajahmadi Sh., Bahi A., Ko F., Aminabhavi T.M., Li J.-R., Arjmand M. UiO-66 metal-organic frameworks in water treatment: A critical review. Progress in Materials Science. 2022; 125(22): 100904. https://doi.org/10.1016/j.pmatsci.2021.100904

83. Liu J., Li Y., Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: a review. Sustainability. 2022; 14(10): 5768. https://doi.org/10.3390/su14105768

84. Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373—8387. https://doi.org/10.1039/D0SC01297A

85. Corma A., Garcia H.I., Llabrés i Xamena F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews. 2010; 110(8): 4606—4655. https://doi.org/10.1021/cr9003924

86. Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1315—1329. https://doi.org/10.1039/b802258p

87. Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138

88. Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/c4cs00094c

89. Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Belosludov R.V., Kobayashi T.C., Sakamoto H., Chiba T., Takata M., Kawazoe Y., Mita Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature. 2005; 436(7048): 238—241. https://doi.org/10.1038/nature03852

90. Zhou H.C., Long J.R., Yaghi O.M. Introduction to metal-organic frameworks. Chemical Reviews. 2012; 112(2): 673—674. https://doi.org/10.1021/cr300014x

91. Sağlam S., Türk F.N., Arslanoğlu H. Use and applications of metal-organic frameworks (MOF) in dye adsorption. Journal of Environmental Chemical Engineering. 2023; 11(5): 110568. https://doi.org/10.1016/j.jece.2023.110568

92. Berijani K., Morsali A., Garcia H. Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous and Mesoporous Materials. 2023; 349: 112410. https://doi.org/10.1016/j.micromeso.2022.112410

93. Rosen A.S., Fung V., Huck P., O’Donnell C.T., Horton M.K., Truhlar D., Persson K.A., Notestein J.M., Snurr R.Q. High-throughput predictions of metal-organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials. 2022; 8(1): 112. https://doi.org/10.1038/s41524-022-00796-6

94. Hermes S., Schröter M.-K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R.W., Fischer R.A. Metal@ MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition. 2005; 44(38): 6237—6241. https://doi.org/10.1002/anie.200462515

95. Qin J., Dou Y., Wu F., Yao Y., Andersen H.R., Helix-Nielsen C., Lim S.Y., Zhang W. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental. 2022; 319: 121940. https://doi.org/10.1016/j.apcatb.2022.121940

96. Juan-Alcañiz J., Gascon J., Kapteijn F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry. 2012; 22(20): 10102—10118. https://doi.org/10.1039/C2JM15563J

97. Mohseni M.M., Jouyandeh M., Sajadi S.M., Hejna A., Habibzadeh S., Mohaddespour Ah., Rabiee N., Daneshgar H., Akhavan O., Asadnia M., Rabiee M., Ramakrishna S., Luque R., Paran S.M.R. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal. 2022; 449(6518): 137700. https://doi.org/10.1016/j.cej.2022.137700

98. Marshall C.R., Staudhammer S.A., Brozek C.K. Size control over metal-organic framework porous nanocrystals. Chemical Science. 2019; 10(41): 9396—9408. https://doi.org/10.1039/C9SC03802G

99. Fonseca J., Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews. 2022; 462(2013): 214520. https://doi.org/10.1016/j.ccr.2022.214520

100. Zacher D., Shekhah O., Abdullah K., Wöll Ch., Fischer R.A. Thin films of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1418—1429. https://doi.org/10.1039/b805038b

101. Sharma U., Pandey R., Basu S., Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. Chemosphere. 2022; 309(Pt 1): 136634. https://doi.org/10.1016/j.chemosphere.2022.136634

102. Stock N., Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews. 2012; 112(2): 933—969. https://doi.org/10.1021/cr200304e

103. Liu J., Chen L., Cui H., Zhang J., Zhang L., Su C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/c4cs00094c

104. Li Z., Chaemchuen S. Recent progress on the synthesis and modified strategies of zeolitic-imidazole Framework-67 towards electrocatalytic oxygen evolution reaction. The Chemical Record. 2023: e202300142. https://doi.org/1010.1002/tcr.202300142

105. Ethiraj J., Palla S., Reinsch H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020; 294(1): 109867. https://doi.org/10.1016/j.micromeso.2020.110439

106. Qin J., Wang S., Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental. 2017; 209: 476—482. https://doi.org/10.1016/j.apcatb.2017.03.018

107. Wenping Y., Xinyue Sh., Yan L., Pang H. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage. 2019; 26: 101018. https://doi.org/10.1016/j.est.2019.101018

108. Jian M., Liu B., Liu R., Qu J., Wang H., Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances. 2015; 5(60): 48433—48441. https://doi.org/10.1039/C5RA04033G

109. Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials. 2009; 21(8): 1410—1412. https://doi.org/10.1021/cm900166h

110. Park K.S., Ni Zh., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F., Chae H.K., O'Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006; 103(27): 10186—10191. https://doi.org/10.1073/pnas.0602439103

111. Zhang J., Zhang T., Yu D., Xiao K., Hong Y. Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm. 2015; 17(43): 8212—8215. https://doi.org/10.1039/C5CE01531F

112. Sundriyal S., Shrivastav V., Mishra S., Deep A. Enhanced electrochemical performance of nickel intercalated ZIF-67/OG composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy. 2020; 45(55): 30859—30869. https://doi.org/10.1016/j.ijhydene.2020.08.075

113. Bradshaw D., El-Hankari S., Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5431—5443. https://doi.org/10.1039/c4cs00127c

114. Duan C., Zhang Y., Li J., Kang L., Xie Y., Qiao W., Zhu Ch., Luo H. Rapid room-temperature preparation of hierarchically porous metal–organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials. 2020; 10(8): 1539. https://doi.org/10.3390/nano10081539

115. Sarawade P., Tan H., Polshettiwar V. Shape- and morphology-controlled sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustainable Chemistry & Engineering. 2013; 1(1): 66—74. https://doi.org/10.1021/sc300036p

116. Hsu S.-H., Li Ch.-T., Chien H.-T., Salunkhe R.R., Suzuki N., Yamauchi Y., Ho K.-Ch., Wu K. C.-W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Scientific Reports. 2014; 4(1): 6983. https://doi.org/10.1038/srep06983

117. Li W., Wang K., Yang X., Zhan F., Wang Y., Liu M., Qiu X., Jie L., Zhan J., Li Q., Liu Y. Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal. 2020; 379: 122256. https://doi.org/10.1016/j.cej.2019.122256

118. Lan T., Wang Q., Lu Ch., Li J., Li J., Chen Y., Li L., Yang J., Li J. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology. 2023; 74(49): 9—17. https://doi.org/10.1016/j.partic.2022.05.004

119. Guillerm V., Kim D., Eubank J.F., Luebke R., Liu X., Adil K., Lah M.S., Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 6141—6172. https://doi.org/10.1039/C4CS00135D

120. Duan C., Huo J., Li F., Yang M., Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks by a versatile cooperative template strategy. Journal of Materials Science. 2018; 53(24): 16276—16287. https://doi.org/10.1007/s10853-018-2793-3

121. Duan C., Li F., Yang M., Zhang H., Wu Y., X H. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Industrial & Engineering Chemistry Research. 2018; 57(45): 15385—15394. https://doi.org/10.1021/acs.iecr.8b04028

122. Du W., Bai Y., Yang Zh., Li R., Zhang D., Ma Zh., Yuan A., Xu J. A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters. 2020; 31(9): 2309—2313. https://doi.org/10.1016/j.cclet.2020.04.017

123. Sumida K., Liang K., Reboul J., Ibarra I.A., Furukawa Sh., Falcaro P. Sol-gel processing of metal-organic frameworks. Chemistry of Materials. 2017; 29(7): 2626—2645. https://doi.org/10.1021/acs.chemmater.6b03934

124. Marquez A.G., Horcajada P., Grosso D., Férey G., Serre Ch., Sanchez C., Boissiere C. Green scalable aerosol synthesis of porous metal-organic frameworks. Chemical Communications. 2013; 49(37): 3848—3850. https://doi.org/10.1039/c3cc39191d

125. Du X.D., Wang Ch.-Ch., Liu J.-G., Zhao X.-D., Zhong J., Li Y.-X., Li J., Wang P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science. 2017; 506: 437—441. https://doi.org/10.1016/j.jcis.2017.07.073

126. Sun W., Zhai X., Zhao L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal. 2016; 289: 59—64. https://doi.org/10.1016/j.cej.2015.12.076

127. Dhakshinamoorthy A., Alvaro M., Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications. 2012; 48(92): 11275—11288. https://doi.org/10.1039/c2cc34329k

128. Tu N.T.T., Sy Ph.Ch., Tran V.Th., Toan T.Th.T., Phong N.H., Long H.Th., Khieu D.Q. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science. 2019; 54(17): 11654—11670. https://doi.org/10.1007/s10853-019-03709-z

129. Julien P.A., Mottillo C., Friščić T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chemistry. 2017; 19(12): 2729—2747. https://doi.org/10.1039/C7GC01078H

130. Phan P.T., Hong J., Tran N., Le Th.H. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials. 2023; 13(2): 352. https://doi.org/10.3390/nano13020352

131. Mansar A., Serier-Brault H. Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry. 2022; 312: 123183. https://doi.org/10.1016/j.jssc.2022.123183

132. Carne A., Carbonell C., Imaz I., Maspoc D. Nanoscale metal-organic materials. Chemical Society Reviews. 2011; 40(1): 291—305. https://doi.org/10.1039/c0cs00042f

133. Wang M., Feng Y., Zhang Y., Li Sh., Wu M., Xue L., Zhao J., Zhang W., Ge M., Lai Y., Mi J. Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for high-performance supercapacitors. Applied Surface Science. 2022; 596(19): 153582. https://doi.org/10.1016/j.apsusc.2022.153582

134. Chalati T., Horcajada P., Gref R., Couvreur P., Serre Ch. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry. 2011; 21(7): 2220—2227. https://doi.org/10.1039/C0JM03563G

135. Abdi J., Sisi A.J., Hadipoor M., Khataee A. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials. 2022; 424(Pt C): 127558. https://doi.org/10.1016/j.jhazmat.2021.127558

136. Fouad O.A., Ali A., Mohamed G.G., Mahmoud N.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr (III) ion determination in centrum multivitamin and real water samples. Microchemical Journal. 2022; 175(1–3): 107228. https://doi.org/10.1016/j.microc.2022.107228

137. Chu R., Weng L., Guan L., Liu J., Zhang X., Wu Z. Preparation and properties comparison of ZIF-67/PVDF and SiCNWs/PVDF composites for energy storage. Journal of Materials Science: Materials in Electronics. 2023; 34(5): 347. https://doi.org/10.1007/s10854-022-09630-7

138. Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews. 2008; 37(1): 191—214. https://doi.org/10.1039/b618320b

139. Gong H., Bie Sh., Zhang J., Ke X., Wang X., Liang J., Wu N., Zhang Q., Luo Ch., Jia Y. In situ construction of ZIF-67-derived hybrid tricobalt tetraoxide@ carbon for supercapacitor. Nanomaterials. 2022; 12(9): 1571. https://doi.org/10.3390/nano12091571

140. Lu Y., Zhan W., He Y., Wang Y., Kong X.-J., Kuang Q., Xie Zh., Zheng L.-S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Applied Materials & Interfaces. 2014; 6(6): 4186—4195. https://doi.org/10.1021/am405858v

141. Chen T.Y., Lina L.-Y., Gengc D.-Sh., Lee P.-Y. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. 2021; 376: 137986. https://doi.org/10.1016/j.electacta.2021.137986

142. Ma F., Jin Sh., Li Y., Feng Y., Tong Y. Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. Journal of Electroanalytical Chemistry. 2022; 904: 115932. https://doi.org/10.1016/j.jelechem.2021.115932

143. Torad N.L., Salunkhe R.R., Li Y., Hamoudi H., Imura M., Sakka Y., Hu Ch.-Ch., Yamauchi Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chemistry-A European Journal. 2014; 20(26): 7895—7900. https://doi.org/10.1002/chem.201400089

144. Wei F., Li X., Yang J., Chen Ch., Sui Y. Embedding cobalt into ZIF-67 to obtain cobalt-nanoporous carbon composites as electrode materials for supercapacitor. Journal of Nanoscience and Nanotechnology. 2017; 17(5): 3504—3508. https://doi.org/10.1166/jnn.2017.13036

145. Пат. (РФ) № 2593145, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Муратов Д.Г., Костишин В.Г., Якушко Е.В., Савиенко А.Г., Щетинин И.В., Попкова А.В. Способ получения нанокомпозита FeNi3/С в промышленных масштабах. Заявл.: 20.03.2015; опубл.: 27.07.2016. URL: https://www.freepatent.ru/patents/2593145

146. Пат. (РФ) № 2455225, МПК B82B3/00, C08F20/44, H01F1/42. Кожитов Л.В., Костикова А.В., Козлов В.В. Способ получения нанокомпозита FeNi3/пиролизованный полиакрилонитрил. Заявл.: 14.06.2011; опубл.: 10.07.2012. URL: https://www.freepatent.ru/patents/2455225

147. Kozhitov L.V., Muratov D.G., Kostishyn V.G., Suslyaev V.I., Korovin E.Yu., Popkova A.V. FeCo/C nanocomposites: Synthesis, magnetic and electromagnetic properties. Russian Journal of Inorganic Chemistry. 2017; 62(11): 1499—1507. https://doi.org/10.1134/S0036023617110110

148. Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657—664. https://doi.org/10.1134/S1063739721080072

149. Yakushko E.V., Kozhitov L.V., Muratov D.G., Kostishyn V.G. NiCo/C nanocomposites: Synthesis and magnetic properties. Russian Journal of Inorganic Chemistry. 2016; 61(12): 1591—1595. https://doi.org/10.1134/S0036023616120202

150. Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin Ev.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105

151. Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin Ev.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15—24. https://doi.org/10.3897/j.moem.9.1.104721

152. Gromov A.A., Yakushko E.V., Muratov D.G., Kozitov L.V., Lomov A.A., Nalivaiko A.Yu., Ozherelkov D., Pelevin I., Marinich S.B. Ni–Co–Cu/carbon nanocomposites: synthesis, characterization and magnetic properties. Nano. 2023; 18(03): 2350015. https://doi.org/10.1142/S1793292023500157

153. Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasiliev A., Tarala V., Korovin Ev. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596


Рецензия

Для цитирования:


Муратов Д.Г., Кожитов Л.В., Запороцкова И.В., Попкова А.В., Слепцов В.В., Зорин А.В. Металлорганические каркасные структуры и композиты на их основе: особенности строения, методы синтеза, электрохимические свойства и перспективы (обзор). Известия высших учебных заведений. Материалы электронной техники. 2024;27(1):5-34. https://doi.org/10.17073/1609-3577j.met202309.557

For citation:


Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Sleptsov V.V., Zorin A.V. Metal-organic frame structures and composites based on them: structural features, synthesis methods, electrochemical properties and prospects (review). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):5-34. (In Russ.) https://doi.org/10.17073/1609-3577j.met202309.557

Просмотров: 926


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)