Metal-organic frame structures and composites based on them: structural features, synthesis methods, electrochemical properties and prospects (review)
https://doi.org/10.17073/1609-3577j.met202309.557
Abstract
This paper presents an overview of various types of organometallic frameworks (MOFs), their structural features, and classification. The main methods and approaches to the synthesis of both MOFs and composite materials based on them are also considered.
The structure of MOFs is a regular three-dimensional lattice formed by organic linkers and metal clusters. The nature of interconnections and types of metals can significantly affect the spatial structure and size of MOF crystals. MOFs can be nano-, micro-, and meso-sized, dense and porous, bulk and layered. This all determines their wide range of properties and applications.
Particular attention is paid to the prospects and ways to control and manipulate the shape of crystals, their size, and the spatial relationships between organic components with metal ions.
This review focuses on zeolite-like frameworks (ZIFs) as the most interesting in terms of structure, synthesis, and applications in the field of materials for electrochemical current sources. Possibilities of modification and control of properties of these ZIFs and composite materials based on them by means of composition control, creation of porous structures, and introduction of impurities, including those with magnetic properties, are considered. Various variants of synthesis of complex composite materials by controlled pyrolysis of MOFs as a simple and scalable process are considered. The influence of heat treatment conditions on the final properties is demonstrated, as well as the prospects for the use of such materials in electrochemistry applications.
As one of the options for changing the properties of MOFs and composite materials based on them, an approach based on doping of MOFs with ZIF-67 structure with another metal is presented. In particular, the scientific team of the authors realized the synthesis of cobalt MOFs in which Co is partially substituted by manganese at the synthesis stage. In addition, a simple technique of synthesis by coprecipitation in aqueous solution was used, but modified by ultrasonic action, which shortens the synthesis time. Electrochemical studies showed that the specific electrochemical capacitance of electrodes made of pyrolyzed MOFs with partial substitution of cobalt for manganese is significantly higher than that of materials without manganese. Both specific capacitance and energy density increase with increasing manganese content in MOF. Mn doping of MOF allows to significantly improve (from 100 to 298 F/g at current density of 0.25 A/g) the electrochemical characteristics of electrode materials for hybrid supercapacitors based on them. The results obtained by the authors indicate that the substitution of cobalt with manganese is an effective way to improve the electrochemical characteristics of MOFs.
Thus, the article demonstrates by the example of literature review and practical experiment that the development of new approaches to the design of composite materials based on MOFs, as well as the study of physical and chemical regularities of interaction of these materials with various kinds of carriers is a very urgent task.
Keywords
About the Authors
D. G. MuratovRussian Federation
29 Leninsky Ave., Moscow 119991;
4-1 Leninsky Ave., Moscow 119049
Dmitriy G. Muratov — Cand. Sci. (Eng.), Leading Researcher (1), Associate Professor (2)
L. V. Kozhitov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
I. V. Zaporotskova
Russian Federation
100 Universitetsky Ave., Volgograd 400062
Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk 142103
Alena V. Popkova — Cand. Sci. (Eng.), Senior Researcher
V. V. Sleptsov
Russian Federation
4 Volokolamskoe Highway, Moscow 125993
Vladimir V. Sleptsov — Dr. Sci. (Eng.), Professor, Head of the Department of Radio Electronics, Telecommunications and Nanotechnology
A. V. Zorin
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Artem V. Zorin — Postgraduate Student
References
1. Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487–1505. https://doi.org/10.1039/b815583f
2. He T., Kong X.J., Li J.R. Chemically stable metal-organic frameworks: rational construction and application expansion. Accounts of Chemical Research. 2021; 54(15): 3083–3094. https://doi.org/10.1021/acs.accounts.1c00280
3. He Y. Zhou W., Qian G., Chen B. Methane storage in metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5657–5678. https://doi.org/10.1039/c4cs00032c
4. Jiang Z., Xue W., Huang H., Zhu H., Sun Y., Zhong Ch. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chemical Engineering Journal. 2023; 454(37): 140093. https://doi.org/10.1016/j.cej.2022.140093
5. Zhao D.L. Feng F., Shen L., Huang Zh., Zhao Q., Lin H., Chung T.-Sh. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chemical Engineering Journal. 2022; 454(6191): 140447. https://doi.org/10.1016/j.cej.2022.140447
6. Gao Q. F., Jiang T.-L., Li W.-Zh., Tan D.-F., Zhang X.-H., Pang J.-Y., Zhang Sh.-H. Porous and stable Zn-series metal-organic frameworks as efficient catalysts for grafting wood nanofibers with polycaprolactone via a copolymerization approach. Inorganic Chemistry. 2023; 62(8): 3464–3473. https://doi.org/10.1021/acs.inorgchem.2c03721
7. Mukoyoshi M., Kitagawa H. Nanoparticle/metal-organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications. 2022; 58(77): 10757–10767. https://doi.org/10.1039/D2CC03233C
8. Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Metal-organic framework materials as chemical sensors. Chemical Reviews. 2012; 112(2): 1105–1125. https://doi.org/10.1021/cr200324t
9. Xuan X., Wang M., Manickam S., Boczkaj Gr., Yoon J.-Y., Sun X. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms. Frontiers in Bioengineering and Biotechnology. 2022; 10: 906374. https://doi.org/10.3389/fbioe.2022.906374
10. Horcajada P., Chalati T., Serre Ch., Gillet B., Sebrie C., Baati T., Eubank J.F., Heurtaux D., Clayette P., Kreuz Ch., Chang J.-S., Kyu H.Y., Marsaud V., Bories Ph.-Nh., Cynober L., Gil S., Férey G., Couvreur P., Gref R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials. 2010; 9(2): 172–178. https://doi.org/10.1038/nmat2608
11. Xu Z., Zhen W., McCleary C., Luo T., Jiang X., Peng Ch., Weichselbaum R.R., Lin W. Nanoscale metal-organic framework with an X-ray triggerable prodrug for synergistic radiotherapy and chemotherapy. Journal of the American Chemical Society. 2023; 145(34): 18698–18704. https://doi.org/10.1021/jacs.3c04602
12. Mu J., Guo Z., Zhao Y., Che H., Yang H., Zhang Zh., Zhang X., Wang Y., Mu J. ZIF-67/rGO/NiPc composite electrode material for high-performance asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics. 2022; 33(22): 17733–17744. https://doi.org/10.1007/s10854-022-08636-5
13. Ahmed F.M., Ateia E.E., El-Dek S., Abd El-Kader Sh.M., Samy A. Silver-substituted cobalt zeolite imidazole framework on reduced graphene oxide nanosheets as a novel electrode for supercapacitors. Journal of Energy Storage. 2022; 55(5): 105443. https://doi.org/10.1016/j.est.2022.105443
14. Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588
15. Ramesh S., Karuppasamy K., Vikraman Dh., Yadav H.M., Kim H.-S., Sivasamy A., Kim H.S. Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceramics International. 2022; 48(19): 29102–29110. https://doi.org/10.1016/j.ceramint.2022.05.048
16. Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(Pt B): 108961. https://doi.org/10.1016/j.est.2023.108961
17. Chettiannan B., Kumar A., Arumugam G., Shajahan Sh., Abu Haija M., Rajendran R. Incorporation of α-MnO2 nanoflowers into zinc-terephthalate metal-organic frameworks for high-performance asymmetric supercapacitors. ACS Omega. 2023; 8(7): 6982–6993. https://doi.org/10.1021/acsomega.2c07808
18. Gurav S.R., Sawant S.A., Chodankar G.R., Shembade U.V., Moholkar A.V., Sonkawade R.G. Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors. Electrochimica Acta. 2023; 467: 143027. https://doi.org/10.1016/j.electacta.2023.143027
19. Ensafi A.A., Fazel R., Rezaei B., Hu J.-S. Electrochemical properties of modified poly (4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors. Fuel. 2022; 324(7482): 124724. https://doi.org/10.1016/j.fuel.2022.124724
20. Zeng Q. Wang L., Li X., You W., Zhang J., Liú X., Wang M., Che R. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Applied Surface Science. 2021; 538(27): 148051. https://doi.org/10.1016/j.apsusc.2020.148051
21. Li X., Huang Ch., Wang Z., Zhen X., Lu W. Enhanced electromagnetic wave absorption of layered FeCo@ carbon nanocomposites with a low filler loading. Journal of Alloys and Compounds. 2021; 879: 160465. https://doi.org/10.1016/j.jallcom.2021.160465
22. Huang K., Wang B., Guo S., Li K. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition. 2018; 130(42): 13892–13896. https://doi.org/10.1002/ange.201809872
23. Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373–8387. https://doi.org/10.1039/D0SC01297A
24. Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130–2144. https://doi.org/10.1039/C7CS00782E
25. Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783–2828. https://doi.org/10.1039/C8CS00829A
26. Phan A., Doonan Ch.J., Uribe-Romo F.J., Knobler C.B., O’Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58–67. https://doi.org/10.1021/ar900116g
27. Pan Y., Liu , Zeng G., Zhao L., Lai Zh. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications. 2011; 47(7): 2071–2073. https://doi.org/10.1039/c0cc05002d
28. Mahdavi H., Eden N.T., Doherty C.M., Acharya D., Smith S.J.D., Mulet X., Hill M.R. Underlying polar and nonpolar modification MOF-based factors that influence permanent porosity in porous liquids. ACS Applied Materials & Interfaces. 2022; 14(20): 23392–23399. https://doi.org/10.1021/acsami.2c03082
29. Li M., Yuan G., Zeng Y., Peng H., Yang Y., Liao J., Yang J., Liu N. Efficient removal of Co (II) from aqueous solution by flexible metal-organic framework membranes. Journal of Molecular Liquids. 2021; 324(2017): 114718. https://doi.org/10.1016/j.molliq.2020.114718
30. Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M., Yagh O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939–943. https://doi.org/10.1126/science.1152516
31. Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2022; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187
32. Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360–5367. https://doi.org/10.1002/adfm.201502253
33. Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220–223. https://doi.org/10.1016/j.matlet.2012.05.077
34. Dang S., Zhu Q.-L., Xu Q. Nanomaterials derived from metal-organic frameworks. Nature Reviews Materials. 2017; 3(1): 17075. https://doi.org/10.1038/natrevmats.2017.75
35. Cao X., Tan Ch., Sindoro M., Zhang H. Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chemical Society Reviews. 2017; 46(10): 2660–2677. https://doi.org/10.1039/C6CS00426A
36. Du Y., Xu Y., Zhou W., Yu Y., Ma X., Liu F., Xu J., Zhu Y. MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage. Green Energy & Environment. 2021; 6(5): 703–714. https://doi.org/10.1016/j.gee.2020.06.010
37. Kyeremateng N.A., Brousse T., Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nature Nanotechnology. 2017; 12: 7–15. https://doi.org/10.1038/nnano.2016.196
38. Gogotsi Y., Simon P. True performance metrics in electrochemical energy storage. Science. 2011; 334(6058): 917–918. https://doi.org/10.1126/science.1213003
39. Feng D., Lei T., Lukatskaya M.R., Park J., Huang Zh., Lee M., Shaw L., Chen Sh., Yakovenko A.A., Kulkarni A., Xiao J., Fredrickson K., Tok J.B., Zou X., Cui Y., Bao Zh. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy. 2018; 3(1): 30–36. https://doi.org/10.1038/s41560-017-0044-5
40. Guo W., Yu Ch., Li Sh., Song X., Huang H., Han X., Wang Zh., Liu Zh., Yu J., Tan X., Qiu J.Sh. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Advanced Materials. 2019; 31(28): 1901241. https://doi.org/10.1002/adma.201901241
41. Yaqoob L., Tayyaba N., Iqbal N. An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research. 2022; 46(4): 3939–3982. https://doi.org/10.1002/er.7491
42. Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040–18048. https://doi.org/10.1007/s10854-017-7747-z
43. Li X., Ding S., Xiao X., Shao J., Wei J., Pang H., Yu Y. N, S co-doped 3D mesoporous carbon-Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A. 2017; 5(25): 12774–12781. https://doi.org/10.1039/C7TA03004E
44. Zhang Y.Z., Wang Y., Xie Y.-L., Cheng T., Lai W., Pang H., Huang W. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale. 2014; 6(23): 14354–14359. https://doi.org/10.1039/c4nr04782f
45. Zhang Sh., Hu R., Dai P., Yu X., Ding Z. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors. Applied Surface Science. 2016; 396: 994–999. https://doi.org/10.1016/j.apsusc.2016.11.074
46. An C., Zhang Y., Guo H., Wang Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances. 2019; 1(12): 4644–4658. https://doi.org/10.1039/C9NA00543A
47. Chen X., Cheng M., Chen D., Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces. 2016; 8(6): 3892–3900. https://doi.org/10.1021/acsami.5b10785
48. Sleptsov V.V., Kukushkin D.Yu., Kulikov S.N., Diteleva A.O. Thin-film nanotechnology for creating energy sources. Vestnik mashinostroeniya. 2021; (2): 65–67. (In Russ.). https://doi.org/10.36652/0042-4633-2021-2-65-67
49. Zhou L., Zhuang Z., Zhao H., Lin M., Zhao D., Mai L. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Advanced Materials. 2017; 29(20): 1602914. https://doi.org/10.1002/adma.201602914
50. Zhao Y., Liu J., Horn M., Motta N., Hu M., Li Y. Recent advancements in metal organic framework based electrodes for supercapacitors. Science China Materials. 2018; 61(2): 159–184. https://doi.org/10.1007/s40843-017-9153-x
51. Shi X., Zheng Sh., Wu Zh.-Sh., Bao X. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry. 2018; 27(1): 25–42. https://doi.org/10.1016/j.jechem.2017.09.034
52. Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15–38. https://doi.org/10.1016/j.ccr.2018.04.018
53. Zhong C., Yida D., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015; 44(21): 7484–7539. https://doi.org/10.1039/c5cs00303b
54. Ghadimi A.M., Ghasemi Sh., Omrani A., Mousavi F. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications. Energy & Fuels. 2023; 37(4): 3121–3133. https://doi.org/10.1021/acs.energyfuels.2c03040
55. Akinwolemiwa B., Peng C., Chen G.Z. Redox electrolytes in supercapacitors. Journal of the Electrochemical Society. 2015; 162(5): A5054–А5059. https://doi.org/10.1149/2.0111505JES
56. Sharma S., Chand P. Zeolitic imidazolate framework-8 and redox-additive electrolyte based asymmetric supercapacitor: A synergetic combination for ultrahigh energy and power density. Journal of Energy Storage. 2023; 73(B): 108961. https://doi.org/10.1016/j.est.2023.108961
57. Zhang L.L., Zhao X.S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009; 38(9): 2520–2531. https://doi.org/10.1039/b813846j
58. Tarascon J.M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359–367. https://doi.org/10.1038/35104644
59. Conway B.E. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 698 p.
60. Sundriyal S., Shrivastav V., Kaur H., Mishra S., Deep A. High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega. 2018; 3(12): 17348–17358. https://doi.org/10.1021/acsomega.8b02065
61. Brousse T., Bélanger D., Long J.W. To be or not to be pseudocapacitive? Journal of the Electrochemical Society. 2015; 162(5): A5185–А5189. https://doi.org/10.1149/2.0201505jes
62. Liang C., Wang Sh., Sha Sh., Lv S., Wang G., Wang B., Li Q., Yu J., Xu X., Zhang L. Novel semiconductor materials for advanced supercapacitors. Journal of Materials Chemistry C. 2023; 11(13): 4288–4317. https://doi.org/10.1039/D2TC04816G
63. Isaeva V.I., Tarasov A.L., Tkachenko O.P., Kapustin G.I., Mishin I.V., Solov’eva S.E., Kustov L. 1, 3-Cyclohexadiene hydrogenation in the presence of a palladium-containing catalytic system based on an MOF-5/calixarene composite. Kinetics and Catalysis. 2011; 52(1): 94–97. https://doi.org/10.1134/S0023158411010058
64. Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers. Angewandte Chemie International Edition. 2004; 43(18): 2334–2375. https://doi.org/10.1002/anie.200300610
65. Isaeva V.I., Tarasov A.L., Yampol’skii Yu.P., Eliseev O.L., Kazantsev R.V., Kustov L.M. Synthesis of nanocrystals of metal-organic frameworks MIL in a microwave field. In: Proceed. of the IV All-rus. conf. in organic chemistry, November 22–27, 2015. Moscow: FGBU Institut organicheskoi khimii im. N.D. Zelinskogo RAN; 2015. 309 p. (In Russ.)
66. Monni N., Baldoví J.J., García Lopez V., Oggianu M., Cadoni E., Quochi F., Clemente M., Mercuri M.L., Coronado E. Reversible tuning of luminescence and magnetism in a structurally flexible erbium-anilato MOF. Chemical Science. 2022; 13(25): 7419–7428. https://doi.org/10.1039/D2SC00769J
67. Papaefstathiou G.S., MacGillivray L.R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coordination Chemistry Reviews. 2003; 246(1-2): 169–184. https://doi.org/10.1016/S0010-8545(03)00122-X
68. Kole G.K., Vittal J.J. Isomerization of cyclobutane ligands in the solid state and solution. Journal of the Indian Chemical Society. 2022; 99(9): 100630. https://doi.org/10.1016/j.jics.2022.100630
69. Xu Q., Chen J., Wang Y., Wang D., Xu X., Xia J., Zhang K.-L., Zhou X., Fan W., Wang Z., Hou Ch., Sun D. Guest-stimulated nonplanar porphyrins in flexible metal-organic frameworks. Small. 2023; 19(44): е2304771. https://doi.org/10.1002/smll.202304771
70. Yaghi O.M., O’Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J. Reticular synthesis and the design of new materials. Nature. 2003; 423(6941): 705–714. https://doi.org/10.1038/nature01650
71. Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1257–1283. https://doi.org/10.1039/b817735j
72. Hagrman P.J., Hagrman D., Zubieta J. Organic-inorganic hybrid materials: From “simple” coordination polymers to organodiamine-templated molybdenum oxides. Angewandte Chemie International Edition. 1999; 38(18): 2638–2684. https://doi.org/10.1002/(sici)1521-3773(19990917)38:18<2638::aid-anie2638>3.0.co;2-4
73. Lu Y., Zhong H., Jian L., Dominic A.M., Hu Y., Gao Zh., Jiao Y., Wu M., Qi H., Huang Ch., Wayment L.J., Kaiser U., Spiecker E., Weidinger I.M., Zhang W., Feng X., Dong R. sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angewandte Chemie International Edition. 2022; 61(39): e202208163. https://doi.org/10.1002/anie.202208163
74. Liu Q., Wang N., Caro J., Huang A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. Journal of the American Chemical Society. 2013; 135(47): 17679–17682. https://doi.org/10.1021/ja4080562
75. Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/1010.1080/10408347.2019.1642732
76. Zhang X., Wang N., Li H., Wang Zh., Wang H. IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Separation and Purification Technology. 2023; 318: 123908. https://doi.org/10.1016/j.seppur.2023.123908
77. Tong P., Liang J., Jiang X., Li J. Research progress on metal-organic framework composites in chemical sensors. Critical Reviews in Analytical Chemistry. 2020; 50(4): 376–392. https://doi.org/10.1080/10408347.2019.1642732
78. Mohtasham H., Rostami M., Gholipour B., Sorouri A.M., Ehrlich H., Ganjali M.R., Rostamnia S., Rahimi-Nasrabadi M., Salimi A., Luque R. Nano-architecture of MOF (ZIF-67)-based Co3O4 NPs@ N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater. Chemosphere. 2023; 310: 136625. https://doi.org/10.1016/j.chemosphere.2022.136625
79. Kesanli B., Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coordination Chemistry Reviews. 2003; 246(1-2): 305–326. https://doi.org/10.1016/j.cct.2003.08.004
80. Zorainy M.Y., Alalm M.G., Kaliaguine S., Boffito D.C. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A. 2021; 9(39): 22159–22217. https://doi.org/10.1039/D1TA06238G
81. Behera N., Duan J., Jin W., Kitagawa S. The chemistry and applications of flexible porous coordination polymers. EnergyChem. 2021; 3(6): 100067. https://doi.org/10.1016/j.enchem.2021.100067
82. Ahmadijokani F., Molavi H., Rezakazemi M., Tajahmadi Sh., Bahi A., Ko F., Aminabhavi T.M., Li J.-R., Arjmand M. UiO-66 metal-organic frameworks in water treatment: A critical review. Progress in Materials Science. 2022; 125(22): 100904. https://doi.org/10.1016/j.pmatsci.2021.100904
83. Liu J., Li Y., Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: a review. Sustainability. 2022; 14(10): 5768. https://doi.org/10.3390/su14105768
84. Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(32): 8373–8387. https://doi.org/10.1039/D0SC01297A
85. Corma A., Garcia H.I., Llabrés i Xamena F.X. Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews. 2010; 110(8): 4606–4655. https://doi.org/10.1021/cr9003924
86. Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1315–1329. https://doi.org/10.1039/b802258p
87. Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138
88. Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011–6061. https://doi.org/10.1039/c4cs00094c
89. Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Belosludov R.V., Kobayashi T.C., Sakamoto H., Chiba T., Takata M., Kawazoe Y., Mita Y. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature. 2005; 436(7048): 238–241. https://doi.org/10.1038/nature03852
90. Zhou H.C., Long J.R., Yaghi O.M. Introduction to metal-organic frameworks. Chemical Reviews. 2012; 112(2): 673–674. https://doi.org/10.1021/cr300014x
91. Sağlam S., Türk F.N., Arslanoğlu H. Use and applications of metal-organic frameworks (MOF) in dye adsorption. Journal of Environmental Chemical Engineering. 2023; 11(5): 110568. https://doi.org/10.1016/j.jece.2023.110568
92. Berijani K., Morsali A., Garcia H. Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous and Mesoporous Materials. 2023; 349: 112410. https://doi.org/10.1016/j.micromeso.2022.112410
93. Rosen A.S., Fung V., Huck P., O’Donnell C.T., Horton M.K., Truhlar D., Persson K.A., Notestein J.M., Snurr R.Q. High-throughput predictions of metal-organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. Npj Computational Materials. 2022; 8(1): 112. https://doi.org/10.1038/s41524-022-00796-6
94. Hermes S., Schröter M.-K., Schmid R., Khodeir L., Muhler M., Tissler A., Fischer R.W., Fischer R.A. Metal@ MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angewandte Chemie International Edition. 2005; 44(38): 6237–6241. https://doi.org/10.1002/anie.200462515
95. Qin J., Dou Y., Wu F., Yao Y., Andersen H.R., Helix-Nielsen C., Lim S.Y., Zhang W. In-situ formation of Ag2O in metal-organic framework for light-driven upcycling of microplastics coupled with hydrogen production. Applied Catalysis B: Environmental. 2022; 319: 121940. https://doi.org/10.1016/j.apcatb.2022.121940
96. Juan-Alcañiz J., Gascon J., Kapteijn F. Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry. 2012; 22(20): 10102–10118. https://doi.org/10.1039/C2JM15563J
97. Mohseni M.M., Jouyandeh M., Sajadi S.M., Hejna A., Habibzadeh S., Mohaddespour Ah., Rabiee N., Daneshgar H., Akhavan O., Asadnia M., Rabiee M., Ramakrishna S., Luque R., Paran S.M.R. Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal. 2022; 449(6518): 137700. https://doi.org/10.1016/j.cej.2022.137700
98. Marshall C.R., Staudhammer S.A., Brozek C.K. Size control over metal-organic framework porous nanocrystals. Chemical Science. 2019; 10(41): 9396–9408. https://doi.org/10.1039/C9SC03802G
99. Fonseca J., Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews. 2022; 462(2013): 214520. https://doi.org/10.1016/j.ccr.2022.214520
100. Zacher D., Shekhah O., Abdullah K., Wöll Ch., Fischer R.A. Thin films of metal-organic frameworks. Chemical Society Reviews. 2009; 38(5): 1418–1429. https://doi.org/10.1039/b805038b
101. Sharma U., Pandey R., Basu S., Saravanan P. Facile monomer interlayered MOF based thin film nanocomposite for efficient arsenic separation. Chemosphere. 2022; 309(Pt 1): 136634. https://doi.org/10.1016/j.chemosphere.2022.136634
102. Stock N., Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews. 2012; 112(2): 933–969. https://doi.org/10.1021/cr200304e
103. Liu J., Chen L., Cui H., Zhang J., Zhang L., Su C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011–6061. https://doi.org/10.1039/c4cs00094c
104. Li Z., Chaemchuen S. Recent progress on the synthesis and modified strategies of zeolitic-imidazole Framework-67 towards electrocatalytic oxygen evolution reaction. The Chemical Record. 2023: e202300142. https://doi.org/1010.1002/tcr.202300142
105. Ethiraj J., Palla S., Reinsch H. Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020; 294(1): 109867. https://doi.org/10.1016/j.micromeso.2020.110439
106. Qin J., Wang S., Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental. 2017; 209: 476–482. https://doi.org/10.1016/j.apcatb.2017.03.018
107. Wenping Y., Xinyue Sh., Yan L., Pang H. Manganese-doped cobalt zeolitic imidazolate framework with highly enhanced performance for supercapacitor. Journal of Energy Storage. 2019; 26: 101018. https://doi.org/10.1016/j.est.2019.101018
108. Jian M., Liu B., Liu R., Qu J., Wang H., Zhang X. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Advances. 2015; 5(60): 48433–48441. https://doi.org/10.1039/C5RA04033G
109. Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials. 2009; 21(8): 1410–1412. https://doi.org/10.1021/cm900166h
110. Park K.S., Ni Zh., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F., Chae H.K., O’Keeffe M., Yaghi O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006; 103(27): 10186–10191. https://doi.org/10.1073/pnas.0602439103
111. Zhang J., Zhang T., Yu D., Xiao K., Hong Y. Transition from ZIF-L-Co to ZIF-67: a new insight into the structural evolution of zeolitic imidazolate frameworks (ZIFs) in aqueous systems. CrystEngComm. 2015; 17(43): 8212–8215. https://doi.org/10.1039/C5CE01531F
112. Sundriyal S., Shrivastav V., Mishra S., Deep A. Enhanced electrochemical performance of nickel intercalated ZIF-67/OG composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy. 2020; 45(55): 30859–30869. https://doi.org/10.1016/j.ijhydene.2020.08.075
113. Bradshaw D., El-Hankari S., Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 5431–5443. https://doi.org/10.1039/c4cs00127c
114. Duan C., Zhang Y., Li J., Kang L., Xie Y., Qiao W., Zhu Ch., Luo H. Rapid room-temperature preparation of hierarchically porous metal–organic frameworks for efficient uranium removal from aqueous solutions. Nanomaterials. 2020; 10(8): 1539. https://doi.org/10.3390/nano10081539
115. Sarawade P., Tan H., Polshettiwar V. Shape-and morphology-controlled Sustainable synthesis of Cu, Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustainable Chemistry & Engineering. 2013; 1(1): 66–74. https://doi.org/10.1021/sc300036p
116. Hsu S.-H., Li Ch.-T., Chien H.-T., Salunkhe R.R., Suzuki N., Yamauchi Y., Ho K.-Ch., Wu K. C.-W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Scientific Reports. 2014; 4(1): 6983. https://doi.org/10.1038/srep06983
117. Li W., Wang K., Yang X., Zhan F., Wang Y., Liu M., Qiu X., Jie L., Zhan J., Li Q., Liu Y. Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal. 2020; 379: 122256. https://doi.org/10.1016/j.cej.2019.122256
118. Lan T., Wang Q., Lu Ch., Li J., Li J., Chen Y., Li L., Yang J., Li J. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology. 2023; 74(49): 9–17. https://doi.org/10.1016/j.partic.2022.05.004
119. Guillerm V., Kim D., Eubank J.F., Luebke R., Liu X., Adil K., Lah M.S., Eddaoudi M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chemical Society Reviews. 2014; 43(16): 6141–6172. https://doi.org/10.1039/C4CS00135D
120. Duan C., Huo J., Li F., Yang M., Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal-organic frameworks by a versatile cooperative template strategy. Journal of Materials Science. 2018; 53(24): 16276–16287. https://doi.org/10.1007/s10853-018-2793-3
121. Duan C., Li F., Yang M., Zhang H., Wu Y., X H. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Industrial & Engineering Chemistry Research. 2018; 57(45): 15385–15394. https://doi.org/10.1021/acs.iecr.8b04028
122. Du W., Bai Y., Yang Zh., Li R., Zhang D., Ma Zh., Yuan A., Xu J. A conductive anionic Co-MOF cage with zeolite framework for supercapacitors. Chinese Chemical Letters. 2020; 31(9): 2309–2313. https://doi.org/10.1016/j.cclet.2020.04.017
123. Sumida K., Liang K., Reboul J., Ibarra I.A., Furukawa Sh., Falcaro P. Sol-gel processing of metal-organic frameworks. Chemistry of Materials. 2017; 29(7): 2626–2645. https://doi.org/10.1021/acs.chemmater.6b03934
124. Marquez A.G., Horcajada P., Grosso D., Férey G., Serre Ch., Sanchez C., Boissiere C. Green scalable aerosol synthesis of porous metal-organic frameworks. Chemical Communications. 2013; 49(37): 3848–3850. https://doi.org/10.1039/c3cc39191d
125. Du X.D., Wang Ch.-Ch., Liu J.-G., Zhao X.-D., Zhong J., Li Y.-X., Li J., Wang P. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science. 2017; 506: 437–441. https://doi.org/10.1016/j.jcis.2017.07.073
126. Sun W., Zhai X., Zhao L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chemical Engineering Journal. 2016; 289: 59–64. https://doi.org/10.1016/j.cej.2015.12.076
127. Dhakshinamoorthy A., Alvaro M., Garcia H. Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications. 2012; 48(92): 11275–11288. https://doi.org/10.1039/c2cc34329k
128. Tu N.T.T., Sy Ph.Ch., Tran V.Th., Toan T.Th.T., Phong N.H., Long H.Th., Khieu D.Q. Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science. 2019; 54(17): 11654–11670. https://doi.org/10.1007/s10853-019-03709-z
129. Julien P.A., Mottillo C., Friščić T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chemistry. 2017; 19(12): 2729–2747. https://doi.org/10.1039/C7GC01078H
130. Phan P.T., Hong J., Tran N., Le Th.H. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications. Nanomaterials. 2023; 13(2): 352. https://doi.org/10.3390/nano13020352
131. Mansar A., Serier-Brault H. Microwave-assisted synthesis to prepare metal-organic framework for luminescence thermometry. Journal of Solid State Chemistry. 2022; 312: 123183. https://doi.org/10.1016/j.jssc.2022.123183
132. Carne A., Carbonell C., Imaz I., Maspoc D. Nanoscale metal-organic materials. Chemical Society Reviews. 2011; 40(1): 291–305. https://doi.org/10.1039/c0cs00042f
133. Wang M., Feng Y., Zhang Y., Li Sh., Wu M., Xue L., Zhao J., Zhang W., Ge M., Lai Y., Mi J. Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for high-performance supercapacitors. Applied Surface Science. 2022; 596(19): 153582. https://doi.org/10.1016/j.apsusc.2022.153582
134. Chalati T., Horcajada P., Gref R., Couvreur P., Serre Ch. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry. 2011; 21(7): 2220–2227. https://doi.org/10.1039/C0JM03563G
135. Abdi J., Sisi A.J., Hadipoor M., Khataee A. State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. Journal of Hazardous Materials. 2022; 424(Pt C): 127558. https://doi.org/10.1016/j.jhazmat.2021.127558
136. Fouad O.A., Ali A., Mohamed G.G., Mahmoud N.F. Ultrasonic aided synthesis of a novel mesoporous cobalt-based metal-organic framework and its application in Cr (III) ion determination in centrum multivitamin and real water samples. Microchemical Journal. 2022; 175(1-3): 107228. https://doi.org/10.1016/j.microc.2022.107228
137. Chu R., Weng L., Guan L., Liu J., Zhang X., Wu Z. Preparation and properties comparison of ZIF-67/PVDF and SiCNWs/PVDF composites for energy storage. Journal of Materials Science: Materials in Electronics. 2023; 34(5): 347. https://doi.org/10.1007/s10854-022-09630-7
138. Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews. 2008; 37(1): 191–214. https://doi.org/10.1039/b618320b
139. Gong H., Bie Sh., Zhang J., Ke X., Wang X., Liang J., Wu N., Zhang Q., Luo Ch., Jia Y. In situ construction of ZIF-67-derived hybrid tricobalt tetraoxide@ carbon for supercapacitor. Nanomaterials. 2022; 12(9): 1571. https://doi.org/10.3390/nano12091571
140. Lu Y., Zhan W., He Y., Wang Y., Kong X.-J., Kuang Q., Xie Zh., Zheng L.-S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Applied Materials & Interfaces. 2014; 6(6): 4186–4195. https://doi.org/10.1021/am405858v
141. Chen T.Y., Lina L.-Y., Gengc D.-Sh., Lee P.-Y. Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. 2021; 376: 137986. https://doi.org/10.1016/j.electacta.2021.137986
142. Ma F., Jin Sh., Li Y., Feng Y., Tong Y. Pyrolysis-derived materials of Mn-doped ZIF-67 for the electrochemical detection of o-nitrophenol. Journal of Electroanalytical Chemistry. 2022; 904: 115932. https://doi.org/10.1016/j.jelechem.2021.115932
143. Torad N.L., Salunkhe R.R., Li Y., Hamoudi H., Imura M., Sakka Y., Hu Ch.-Ch., Yamauchi Y. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chemistry-A European Journal. 2014; 20(26): 7895–7900. https://doi.org/10.1002/chem.201400089
144. Wei F., Li X., Yang J., Chen Ch., Sui Y. Embedding cobalt into ZIF-67 to obtain cobalt-nanoporous carbon composites as electrode materials for supercapacitor. Journal of Nanoscience and Nanotechnology. 2017; 17(5): 3504–3508. https://doi.org/10.1166/jnn.2017.13036
145. Patent (RU) No 2593145, IPC B82B3/00, C08F20/44, H01F1/42. Kozhitov L.V., Muratov D.G., Kostishin V.G., Yakushko E.V., Savienko A.G., Shchetinin I.V., Popkova A.V. A method for producing FeNi3/C nanocomposite on an industrial scale. Appl.: 03.20.2015; publ.: 07.27.2016. (In Russ.). URL: https://www.freepatent.ru/patents/2593145
146. Patent (RU) No 2455225, IPC B82B3/00, C08F20/44, H01F1/42. Kozhitov L.V., Kostikova A.V., Kozlov V.V. Method for producing FeNi3/pyrolyzed polyacrylonitrile nanocomposite. Appl.: 06.14.2011; publ.: 07.10.2012. (In Russ.). URL: https://www.freepatent.ru/patents/2455225
147. Kozhitov L.V., Muratov D.G., Kostishyn V.G., Suslyaev V.I., Korovin E.Yu., Popkova A.V. FeCo/C nanocomposites: Synthesis, magnetic and electromagnetic properties. Russian Journal of Inorganic Chemistry. 2017; 62(11): 1499–1507. https://doi.org/10.1134/S0036023617110110
148. Muratov D.G., Kozhitov L.V., Kazaryan T.M., Vasil’ev A.A., Popkova A.V., Korovin E.Yu. Synthesis and electromagnetic properties of FeCoNi/C nanocomposites based on polyvinyl alcohol. Russian Microelectronics. 2021; 50(8): 657–664. https://doi.org/10.1134/S1063739721080072
149. Yakushko E.V., Kozhitov L.V., Muratov D.G., Kostishyn V.G. NiCo/C nanocomposites: Synthesis and magnetic properties. Russian Journal of Inorganic Chemistry. 2016; 61(12): 1591–1595. https://doi.org/10.1134/S0036023616120202
150. Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A.A., Popkova A.V., Tarala V.A., Korovin Ev.Yu. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99–108. https://doi.org/10.3897/j.moem.7.3.77105
151. Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin Ev.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15–24. https://doi.org/10.3897/j.moem.9.1.104721
152. Gromov A.A., Yakushko E.V., Muratov D.G., Kozitov L.V., Lomov A.A., Nalivaiko A.Yu., Ozherelkov D., Pelevin I., Marinich S.B. Ni–Co–Cu/carbon nanocomposites: synthesis, characterization and magnetic properties. Nano. 2023; 18(03): 2350015. https://doi.org/10.1142/S1793292023500157
153. Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasiliev A., Tarala V., Korovin Ev. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596
Review
For citations:
Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Sleptsov V.V., Zorin A.V. Metal-organic frame structures and composites based on them: structural features, synthesis methods, electrochemical properties and prospects (review). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):5-34. (In Russ.) https://doi.org/10.17073/1609-3577j.met202309.557