Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Synthesis of thin-film magnetic structures for spin-orbitronics

https://doi.org/10.17073/1609-3577j.met202310.559

Abstract

Multilayer metallic nanostructures are promising not only for the creation of spin valves based on the giant magnetoresistance effect, but also for studying the nature of topological magnetism aiming to creation, for example, new nanoscale devices for storing and transmitting data based on magnetic skyrmions. Actual problem remains the development of methods for the synthesis and configuration of thin-film nanostructures and control over spin textures in them under the influence of electric and spin currents arising due to the spin Hall effect, with external fields applied. In this work the metallic thin film nanostuctures of the ferromagnetic/heavy metal type were obtained by the magnetron sputtering method: Ru(10 nm)/Co(0.8)/Ru(2), Ru(10)/Co(0.8)/Ru(2)/W(4), Pt(5)/Co(0.8)/MgO(2)/Pt(2), Pt(15)/Co(0.8)/MgO(2)/Pt(2). Electrical contacts and Hall structures with different widths of the current-carrying bridge were fabricated on the obtained samples using electron beam and photolithography. Based on experimental data obtained from a vibrating magnetometer, the magnetic parameters of each sample were calculated, including saturation magnetization, energy and field of magnetic anisotropy, and coercive force, depending on the type of ferromagnetic layer and heavy metal layer. The domain structure of the samples was determined using Kerr microscopy. Electrical resistance modeling was performed, and critical current values and maximum current density in nanostuctures were estimated. It was shown that all obtained thin-film samples have perpendicular magnetic anisotropy and can be used to study current-induced phenomena and spin transfer processes in nanostuctures.

About the Authors

A. V. Telegin
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

18 Sofia Kovalevskay Str., Ekaterinburg, 620108

Andrey V. Telegin — Cand. Sci. (Phys.-Math.), Leading Researcher, Head of Laboratory



Zh. Zh. Namsaraev
Far Eastern Federal University
Russian Federation

10 Ajax Bay, Russky Island, Vladivostok 690922

Zhimba Zh. Namsaraev — Research Engineer, Department of General and Experimental Physics, Institute of High Technologies and Advanced Materials



V. D. Bessonov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

18 Sofia Kovalevskay Str., Ekaterinburg, 620108

Vladimir D. Bessonov — PhD (Phys.-Math.), Senior Researcher



V. S. Teplov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

18 Sofia Kovalevskay Str., Ekaterinburg, 620108

Valentin S. Teplov — Cand. Sci. (Phys.-Math.), Junior Researcher



A. V. Ognev
Far Eastern Federal University; Sakhalin State University
Russian Federation

10 Ajax Bay, Russky Island, Vladivostok 690922

33 Kommunistichesky Ave., Yuzhno-Sakhalinsk 693000

Alexey V. Ognev — Dr. Sci. (Phys.-Math.), Chief Researcher, Laboratory of Film Technologies, Department of General and Experimental Physics, Institute of High Technologies and Advanced Materials



References

1. Tumanski S. Thin film magnetoresistive sensors. Bristol; Philadelphia: Inst. of physics publ., Cop; 2001. 433 p. https://doi.org/10.1887/0750307021

2. Fert A. Nobel lecture: Origin, development, and future of spintronics. Reviews of Modern Physics. 2008; 80: 1517. https://doi.org/10.1103/RevModPhys.80.1517

3. Naumova L.I., Milyaev M.A., Zavornitsin R.S., Pavlova A.Y., Maksimova I.K., Krinitsina T.P., Chernyshova T.A., Proglyado V.V., Ustinov V.V. High-sensitive sensing elements based on spin valves with antiferromagnetic interlayer coupling. The Physics of Metals and Metallography. 2019; 120: 653—659. https://doi.org/10.1134/S0031918X1907007X

4. Cardoso S., Leitao D.C., Dias T.M., Valadeiro J., Silva M.D., Chicharo A., Silverio V., Gaspar J., Freitas P.P. Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. Journal of Physics D: Applied Physics. 2017; 50(21): 213001. https://doi.org/10.1088/1361-6463/aa66ec

5. Epitaxial growth of complex metal oxides. Koster G., Huijben M., Rijnders G. (eds.). Elsevier; 2015. 479 p. https://doi.org/10.1016/C2018-0-02659-6

6. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications. Applied Physics Reviews. 2016; 3: 011301. http://dx.doi.org/10.1063/1.4941311

7. Chernyshova T.A., Milyaev M.A., Naumova L.I., Proglyado V.V., Bannikova N.S., Maksimova I.K., Petrov I.A., Ustinov V.V. Magnetoresistive sensitivity and uniaxial anisotropy of microstrips of spin valves with a synthetic antiferromagnet. Physics of Metals and Metallography. 2017; 118: 415–420. https://doi.org/10.1134/S0031918X17050040

8. Fukuzawa H., Iwasaki H., Koi K., Sahashi M. Soft magnetic characteristics of an ultrathin CoFeNi free layer in spin-valve films. Journal of Magnetism and Magnetic Materials. 2006; 298(1): 65—71. https://doi.org/10.1016/j.jmmm.2005.03.010

9. Svalov A.V., Sorokin A.N., Savin P.A., García-Arribas A., Fernández A., Vas'kovskiy V.O., Kurlyandskaya G.V. Co/Cu/Co pseudo spin-valve system prepared by magnetron sputtering with different argon pressure. Key Engineering Materials. 2015; 644: 211—214. https://doi.org/10.4028/www.scientific.net/KEM.644.211

10. Lau J.W., Shaw J.M. Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges. Journal of Physics D: Applied Physics. 2011; 44(30): 303001. https://doi.org/10.1088/0022-3727/44/30/303001

11. Parkin S., Hayashi M., Thomas L. Magnetic domain-wall racetrack memory. Science. 2008; 320(5873): 190—194. https://doi.org/10.1126/science.1145799

12. Ummelen F., Swagten H., Koopmans B. Racetrack memory based on inplane-field controlled domain-wall pinning. Scientific Reports. 2017; 7(1): 833. https://doi.org/10.1038/s41598-017-00837-x

13. Jungfleisch M.B., Zhang W., Hoffmann A. Perspectives of antiferromagnetic spintronics. Physics Letters, Section A: General, Atomic and Solid State Physics. 2018; 382(13): 865—871. https://doi.org/10.1016/j.physleta.2018.01.008

14. Wang F., Bürgler D.E., Adam R., Parlak U., Cao D., Greb C., Heidtfeld S., Schneider C.M. Magnetization relaxation dynamics in [Co/Pt]3 multilayers on pico- and nanosecond timescales. Physical Review Research. 2021; 3(3): 033061. https://doi.org/10.1103/PhysRevResearch.3.033061

15. Rinkevich A.B., Perov D.V., Kuznetsov E.A., Milyaev M.A., Romashev L.N., Ustinov V.V. Microwave penetration through (Fe0.82Ni0.18)/V superlattices. Journal of Magnetism and Magnetic Materials. 2020; 493: 165700. https://doi.org/10.1016/j.jmmm.2019.165700

16. Manchon A., Belabbes A. Chapter One – Spin-orbitronics at transition metal interfaces. Solid State Physics. 2017; 68: 1—89. https://doi.org/10.1016/bs.ssp.2017.07.001

17. Bogdanov A.N., Yablonskii D.A. Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Zhurnal éksperimental'noĭ i teoreticheskoĭ fiziki = The Journal of Experimental and Theoretical Physics. 1989; 95(1): 178.

18. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials. 2017; 2(7): 17031. https://doi.org/10.1038/natrevmats.2017.31

19. Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nature Reviews Materials. 2016; 1(7): 16044. https://doi.org/10.1038/natrevmats.2016.44

20. Everschor-Sitte K., Masell J., Reeve R.M., Kläui M. Perspective: Magnetic skyrmions – Overview of recent progress in an active research field. Journal of Applied Physics. 2018; 124(24): 240901. https://doi.org/10.1063/1.5048972

21. Nagaosa N., Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 2013; 8: 899—911. https://doi.org/10.1038/nnano.2013.243

22. Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. Spin Hall effects. Reviews of Modern Physics. 2015; 87(4): 1213—1260. https://doi.org/10.1103/RevModPhys.87.1213

23. Heinonen O., Jiang W., Somaily H., Te Velthuis S.G., Hoffmann A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Physical Review B. 2016; 93: 094407. https://doi.org/10.1103/PhysRevB.93.094407

24. Jiang W., Chen G., Liu K., Zang J., Te Velthuis S.G., Hoffmann, A. Skyrmions in magnetic multilayers. Physics Reports. 2017; 704: 1—49. https://doi.org/10.1016/j.physrep.2017.08.001

25. Vonsovskiǐ S.V. Magnetism. New York: J. Wiley; 1974. 1256 p.

26. Manchon A., Železný J., Miron I. M., Jungwirth T., Sinova J., Thiaville A., Garello K., Gambardella P. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Reviews of Modern Physics. 2019; 91(3): 035004. https://doi.org/10.1103/RevModPhys.91.035004

27. Stebliy M.E., Kolesnikov A.G., Ognev A.V., Davydenko A.V., Stebliy E.V., Wang X., Han X., Samardak A.S. Advanced Method for the reliable estimation of spin-orbit-torque efficiency in low-coercivity ferromagnetic multilayers. Physical Review Applied. 2019; 11(5): 054047. https://doi.org/10.1103/PhysRevApplied.11.054047


Review

For citations:


Telegin A.V., Namsaraev Zh.Zh., Bessonov V.D., Teplov V.S., Ognev A.V. Synthesis of thin-film magnetic structures for spin-orbitronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):66-74. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.559

Views: 429


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)