Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Influence of heat treatment on the structure and mechanical properties of zirconium dioxide crystals partially stabilized by samarium oxide

https://doi.org/10.17073/1609-3577j.met202310.562

EDN: GCCFUW

Abstract

The effect of high-temperature treatment in different media on the phase composition, microhardness and fracture toughness of (ZrO2)1-х(Sm2O3)х crystals with x = 0.02÷0.06 has been studied. The crystals have been grown using direction melt crystallization in a cold skull. The crystals have been heat treated at 1600 °C for 2 h in air and in vacuum. The phase composition of the crystals has been studied using X-ray diffraction and Raman scattering. We show that samarium cations enter the ZrO2 lattice mainly in a trivalent charge state and do not change their charge after air or vacuum annealing. The as-annealed phase composition has changed in all the test crystals except for the (ZrO2)0.94(Sm2O3)0.06 composition. After air or vacuum annealing the (ZrO2)1-x(Sm2O3)x crystals with 0.002 ≤ x ≤ 0.05 contain a monoclinic phase. The (ZrO2)0.94(Sm2O3)0.06 crystals contain two tetragonal phases (t and t´) with different tetragonality degrees. After air or vacuum annealing of the (ZrO2)0.94(Sm2O3)0.06 crystals the lattice parameters of the t and t´ phases change in opposite manners, suggesting that the tetragonality degree of the t phase increases whereas the tetragonality degree of the t´ phase decreases. The microhardness and fracture toughness of the as-annealed crystals depend on the Sm2O3 concentration in the solid solutions. The formation of the monoclinic phase in the (ZrO2)1-х(Sm2O3)х crystals with 0.037 ≤ x ≤ 0.05 significantly reduces the microhardness and fracture toughness of the crystals. Annealing of the (ZrO2)0.94(Sm2O3)0.06 crystals triggers more efficient hardening mechanisms and thus increases the fracture toughness of the crystals. We show that air or vacuum annealing of the (ZrO2)0.94(Sm2O3)0.06 crystals increases the fracture toughness of the crystals by 1.5 times as compared with that of the as-grown crystals.

About the Authors

M. A. Borik
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Mikhail A. Borik — Senior Researcher



A. V. Kulebyakin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Aleksej V. Kulebyakin — Cand. Sci. (Eng.), Senior Researcher



E. E. Lomonova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Elena E. Lomonova — Dr. Sci. (Eng.), Head Laboratory



F. O. Milovich
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Filipp O. Milovich — Cand. Sci. (Phys.-Math.), Senior Researcher



V. A. Myzina
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Valentina A. Myzina — Researcher



P. A. Ryabochkin
National Research Ogarev Mordovia State University
Russian Federation

68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia

Polina A. Ryabochkina — Dr. Sci. (Phys.-Math.), Professor of the Department of General Physics



N. V. Sidorova
National Research Ogarev Mordovia State University
Russian Federation

68 Bolshevistskaya Str., Saransk 430005, Republic of Mordovia

Natalya V. Sidorova — Cand. Sci. (Phys.-Math.), Junior Researcher



N. Yu. Tabachkova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Nataliya Yu. Tabachkova — Cand. Sci. (Phys.-Math.), Senior Researcher



A. S. Chislov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Str., Moscow 119991

Artem S. Chislov — Cand. Sci. (Phys.-Math.), Junior Researcher

 



References

1. Basu R.N. Materials for solid oxide fuel cells. In: Basu S. (Eds). Recent trends in fuel cell science and technology. New York, NY: Springer; 2007. P. 286—331. https://doi.org/10.1007/978-0-387-68815-2_12

2. Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232

3. Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090

4. Hongsong Z., Jianguo L., Gang L., Zheng Z., Xinli W. Investigation about thermophysical properties of Ln2Ce2O7 (Ln = Sm, Er and Yb) oxides for thermal barrier coatings. Materials Research Bulletin. 2012; 47(12): 4181—4186. https://doi.org/10.1016/j.materresbull.2012.08.074

5. Guo L., Guo H., Ma G., Gong S., Xu H. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln = Nd and Sm) ceramics. Ceramics International. 2013; 39(6): 6743—6749. https://doi.org/10.1016/j.ceramint.2013.02.003

6. Wei X., Hou G., An Y., Yang P., Zhao X., Zhou H., Chen J. Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ. Ceramics International. 2021; 47(5): 6875—6883. https://doi.org/10.1016/j.ceramint.2020.11.032

7. Liu X.Y., Wang X.Z., Javed A., Zhu C., Liang G.Y. The effect of sintering temperature on the microstructure and phase transformation in tetragonal YSZ and LZ/YSZ composites. Ceramics International. 2016; 42(2): 2456—2465. https://doi.org/10.1016/j.ceramint.2015.10.046

8. Evans A.G., Mumm D.R., Hutchinson J.W., Meier G.H., Pettit F.S. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. 2001; 46(5): 505—553. https://doi.org/10.1016/S0079-6425(00)00020-7

9. Vaßen R., Jarligo M.O., Steinke T., Mack D.E., Stöver D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology. 2010; 205(4): 938—942. https://doi.org/10.1016/j.surfcoat.2010.08.151

10. Bahamirian M., Hadavi S.M.M., Farvizi M., Rahimipour M.R., Keyvani A. Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications. Ceramics International. 2019; 45(6): 7344—7350. https://doi.org/10.1016/j.ceramint.2019.01.018

11. Bobzin K., Zhao L., Öte M., Königstein T. A highly porous thermal barrier coating based on Gd2O3–Yb2O3 co-doped YSZ. Surface and Coatings Technology. 2019; 366: 349—354. https://doi.org/10.1016/j.surfcoat.2019.03.064

12. Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84(1): 341—348. https://doi.org/10.1007/s10971-017-4483-z

13. Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface and Coatings Technology. 2020; 403:v126387. https://doi.org/10.1016/j.surfcoat.2020.126387

14. Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062

15. Bisson J.F., Fournier D., Poulain M., Lavigne O., Mévrel R. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x

16. Fan W., Wang Z.Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002

17. Raghavan S., Wang H., Porter W.D., Dinwiddie R.B, Mayo M.J. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia. 1998; 39(8): 1119—1125.

18. Loganathan A., Gandhi A.S. Toughness evolution in Gd-and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. Journal of Materials Science. 2017; 52: 7199—7206. https://doi.org/10.1007/s10853-017-0956-2

19. Ponnuchamy M.B., Gandhi A.S. Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. Journal of the European Ceramic Society. 2015; 35(6): 1879—1887. https://doi.org/10.1016/j.jeurceramsoc.2014.12.027

20. Rebollo N.R., Gandhi A.S., Levi C.G. Phase stability issues in emerging TBC systems. High Temperature Corrosion and Materials Chemistry IV. 2003: 431—442.

21. Borik M.A., Chislov A., Kulebyakin A., Lomonova E., Milovich F., Myzina V., Ryabochkina P., Sidorova N., Tabachkova N. Phase composition and mechanical properties of Sm2O3 partially stabilized zirconia crystals. Crystals. 2022; 12(11): 1630. https://doi.org/10.3390/cryst12111630

22. Niihara K.A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters. 1983; 2: 221—223. https://doi.org/10.1007/BF00725625

23. Chien F.R., Ubic F.J., Prakash V., Heuer A.H. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Materialia. 1998; 46(6): 2151—2171. https://doi.org/10.1016/S1359-6454(97)00444-8


Supplementary files

Review

For citations:


Borik M.A., Kulebyakin A.V., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkin P.A., Sidorova N.V., Tabachkova N.Yu., Chislov A.S. Influence of heat treatment on the structure and mechanical properties of zirconium dioxide crystals partially stabilized by samarium oxide. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023;26(4):320-331. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.562. EDN: GCCFUW

Views: 385


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)