Creattion of silicon-carbon films by induction assisted plasma chemical deposition
https://doi.org/10.17073/1609-3577j.met202310.564
Abstract
Silicon-carbon films are of great interest as diamond-like materials combining unique properties – high hardness, adhesion to a wide class of materials, abrasion resistance, as well as chemical resistance, low coefficient of friction and biocompatibility. The presence of silicon in the composition makes it possible to significantly reduce the internal mechanical stresses in such coatings compared to diamond ones. In modern production, films have been used primarily as solid lubricants and protective coatings. There are a large number of methods for producing silicon-carbon films, the most widespread among which are various variants of vapor-phase chemical deposition. In this paper, a method for the synthesis of silicon-carbon films was proposed and tested, based on the use of a high-frequency inductor to produce a plasma of vapors of silicon-carbon liquid injected into the chamber from an external source. Pure silicon-carbon films with a carbon atom content with sp3-hybridized orbitals of 63–65% were obtained on sitall substrates. The composition, surface roughness and coefficient of friction of unalloyed silicon-carbon films obtained by the proposed method were studied. The possibility of resistive switching in thin silicon carbon films in crossbar structures with metal electrodes was studied.
Keywords
About the Authors
A. A. TemirovRussian Federation
4-1 Leninsky Ave., Moscow 119049
Alexander A. Temirov — Researcher, Department of Materials Science of Semiconductors and Dielectrics
I. V. Kubasov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Ilya V. Kubasov — Cand. Sci. (Phys. -Math.), Senior Researcher, Department of Materials Science of Semiconductors and Dielectrics
A. V. Turutin
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Andrei V. Turutin — Cand. Sci. (Phys.-Math.), Senior Researcher, Department of Materials Science of Semiconductors and Dielectrics
T. S. Ilina
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Tatiana S. Ilina — Researcher, Department of Materials Science of Semiconductors and Dielectrics
A. M. Kislyuk
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Alexander M. Kislyuk — Researcher, Department of Materials Science of Semiconductors and Dielectrics
D. A. Kiselev
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Dmitry A. Kiselev — Cand. Sci. (Phys.-Math.), Head of the Laboratory of Physics of Oxide Ferroelectrics, Department of Materials Science of Semiconductors and Dielectrics
E. A. Skryleva
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Elena A. Skryleva — Researcher, Department of Materials Science of Semiconductors and Dielectrics
N. A. Sobolev
Russian Federation
4-1 Leninsky Ave., Moscow 119049, Russian Federation;
3810-193 Aveiro, Portugal
Nikolai A. Sobolev — Cand. Sci. (Phys.-Math.), Researcher, Department of Materials Science of Semiconductors and Dielectrics (1); PhD, Professor Jubilado, Department of Physics (2)
I. A. Salimon
Russian Federation
Territory of the Innovation Center “Skolkovo", 30-1 Bolshoy Blvd, Moscow 121205
Igor A. Salimon — Postgraduate Student, Center for Photonic Science and Engineering
N. V. Batrameev
Russian Federation
16 Buzheninova Str., Moscow 107023
Nikolai V. Batrameev — Engineer
M. D. Malinkovich
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Mikhail D. Malinkovich — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science of Semiconductors and Dielectrics
Yu. N. Parkhomenko
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Yuri N. Parkhomenko — Dr. Sci. (Phys.-Math.), Professor, Scientific Consultant, Department of Materials Science of Semiconductors and Dielectrics
References
1. Meškinis Š., Tamulevičienė A. Structure, properties and applications of diamond like nanocomposite (SiOx containing DLC) films: A review. Materials Science. 2011; 17(4): 358—370. https://doi.org/10.5755/j01.ms.17.4.770
2. Gorshunov B.P., Shupegin M.L., Ivanov V.Yu., Prokhorov A.S., Spektor I.E., Volkov A.A. IR spectroscopy of diamondlike silicon-carbon films. Technical Physics. 2008; 53(5): 641—645.
3. Yu S. Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE. 2018; 106(2): 260—285. https://doi.org/10.1109/JPROC.2018.2790840
4. Wan J.Z., Pollak F.H., Dorfman B.F. Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing. Journal of Applied Physics. 1997; 81(9): 6407—6414. https://doi.org/10.1063/1.364421
5. Gao X., Zhang X., Wan C., Wang J., Tan X., Zeng D. Temperature-dependent resistive switching of amorphous carbon/silicon heterojunctions. Diamond and Related Materials. 2012; 22: 37—41. https://doi.org/10.1016/j.diamond.2011.12.012
6. Ren B., Wang L., Wang Lin., Huang J., Tang Ke, Lou Y., Yuan D., Pan Zh., Xia Y. Investigation of resistive switching in graphite-like carbon thin film for non-volatile memory applications. Vacuum. 2014; 107: 1—5. https://doi.org/10.1016/j.vacuum.2014.03.021
7. Santini C.A., Sebastian A., Marchiori Ch., Jonnalagadda V.P., Dellmann L., Koelmans W.W., Rossell M.D., Rossel Ch.P., Eleftheriou Ev. Oxygenated amorphous carbon for resistive memory applications. Nature Communications. 2015; 6(1): 8600. https://doi.org/10.1038/ncomms9600
8. Liao Y.-Y., Liao W.-B., Jaing C.-C., Chang Y.-C., Lee C.-C., Kuo C.-C. Optical properties of transparent diamond-like carbon thin films. In: Optical Interference Coatings 2016. Tucson, Arizona United States 19–24 June 2016. Washington, D.C.: OSA; 2016. P. TD.10. https://doi.org/10.1364/OIC.2016.TD.10
9. Grill A. Diamond-like carbon: state of the art. Diamond and Related Materials. 199; 8(2–5): 428—434. https://doi.org/10.1016/S0925-9635(98)00262-3
10. Belogorokhov A.I., Dodonov A.M., Malinkovich M.D., Parkhomenko Y.N., Smirnov A.P., Shupegin M.L. Studying of molecular structure of matrix of diamond-like silicon-carbon nanocomposites. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2007; 1: 69—71. (In Russ.)
11. Jana S., Das S., Gangopadhyay U., Mondal A., Ghosh P. A clue to understand environmental influence on friction and wear of diamond-like nanocomposite thin film. Advances in Tribology. 2013; (1-4): 1—7. https://doi.org/10.1155/2013/352387
12. Hofmann D., Kunkel S., Bewilogua K., Wittorf R. From DLC to Si-DLC based layer systems with optimized properties for tribological applications. Surface and Coatings Technology. 2013; 215: 357—363. https://doi.org/10.1016/j.surfcoat.2012.06.094
13. Venkatraman C., Brodbeck C., Lei R. Tribological properties of diamond-like nanocomposite coatings at high temperatures. Surface and Coatings Technology. 1999; 115(2–3): 215—221. https://doi.org/10.1016/S0257-8972(99)00241-8
14. Barve S.A., Chopade S., Kar R., Chand N., Deo M.N., Biswas A., Patel N., Rao G.M., Patil D.S., Sinha S. SiOx containing diamond like carbon coatings: Effect of substrate bias during deposition. Diamond and Related Materials. 2017; 71: 63—72. https://doi.org/10.1016/j.diamond.2016.12.003
15. Nakazawa H., Kamata R., Miura S., Okuno S. Effects of frequency of pulsed substrate bias on structure and properties of silicon-doped diamond-like carbon films by plasma deposition. Thin Solid Films. 2015; 574: 93—98. https://doi.org/10.1016/j.tsf.2014.11.078
16. Batory D., Jedrzejczak A., Kaczorowski W., Kolodziejczyk L., Burnat B. The effect of Si incorporation on the corrosion resistance of a-C:H:SiOx coatings. Diamond and Related Materials. 2016; 67: 1—7. https://doi.org/10.1016/j.diamond.2015.12.002
17. Lazauskas A., Grigaliunas V., Guobienė A., Puišo J., Prosyčevas I., Baltrusaitis J. Polyvinylpyrrolidone surface modification with SiOx containing amorphous hydrogenated carbon (a-C:H/SiOx) and nitrogen-doped a-C:H/SiOx films using Hall-type closed drift ion beam source. Thin Solid Films. 2013; 538: 25—31. https://doi.org/10.1016/j.tsf.2012.11.109
18. Santra T.S., Bhattacharyya T.K., Patel P., Tseng F.G., Barik T.K. Structural and tribological properties of diamond-like nanocomposite thin films. Surface and Coatings Technology. 2011; 206(2-3): 228—233. https://doi.org/10.1016/j.surfcoat.2011.06.057
19. Dorfman B.F. Stabilized sp2/sp3 carbon and metal-carbon composites of atomic scale as interface and surface-controlling dielectric and conducting materials. In: Handbook of Surfaces and Interfaces of Materials. 2001; 1(8): 447—508. https://doi.org/10.1016/B978-012513910-6/50015-3
20. Yang W.J., Sekino T., Shim K.B., Niihara K., Auh K.H. Microstructure and tribological properties of SiOx/DLC films grown by PECVD. Surface and Coatings Technology. 2005; 194(1): 128—135. https://doi.org/10.1016/j.surfcoat.2004.05.023
21. Lanza M., Philip Wong H.-S., Pop E., Ielmini D., Strukov D., Regan B.C., Larcher L., Villena M.A., Yang J.J., Goux L., Belmonte A., Yang Y., Puglisi F.M., Kang J., Magyari-Kope B., Yalon E., Kenyon A., Buckwell M., Mehonic A., Shluger A.L., Li H., Hou T.-H. A., Hudec B., Akinwande D., Ge R., Ambrogio S., Roldan J.B., Miranda E., Sune J., Pey K.L., Wu X., Raghavan N., Wu E., Lu W.D., Navarro G., Zhang W., Wu H., Li R., Holleitner A., Wurstbauer U., Lemme M.Ch., Liu M., Long Sh., Liu Q., Lv H., Padovani A., Pavan P., Valov Il., Jing X., Han T., Zhu K., Chen Sh., Hui F., Shi Y. Recommended methods to study resistive switching devices. Advanced Electronic Materials. 2019; 5(1): 1800143. https://doi.org/10.1002/aelm.201800143
22. Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports. 2002; 37(4-6): 129—281. https://doi.org/10.1016/S0927-796X(02)00005-0
Review
For citations:
Temirov A.A., Kubasov I.V., Turutin A.V., Ilina T.S., Kislyuk A.M., Kiselev D.A., Skryleva E.A., Sobolev N.A., Salimon I.A., Batrameev N.V., Malinkovich M.D., Parkhomenko Yu.N. Creattion of silicon-carbon films by induction assisted plasma chemical deposition. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(1):56-65. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.564