Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Problems of synthesis of connectionist representations and continuum models of the environs on the example of memristors

https://doi.org/10.17073/1609-3577j.met202311.567

Abstract

The ways of complementarity of the local parameters of the С-system and the integral characteristics of the environment in which it is immersed are discussed. Examples of such model situation are the calculation of the conductivity of the memristor filament region, percolation phenomena, and chemically enhanced photoresists. The simplest case of interaction between a С-system and a medium is associated with the jumping conductivity of polymers, and for the analysis of more complex cases, we have identified 4 pairs of oppositions. For the first time, a hidden contradiction was discovered in the formal definition of the С-system. To avoid this contradiction in materials science models, it is necessary to use fast variables when describing transport signals. We formalize the concept of a medium as a tuple of continuous functions, for example, an electric field given in space. These functions are interpolated over a certain volume, from which small-radius balls located at the points of the elements of the С-system are punched out. The immediate semantics of such a ball is a nanocrystal inside an amorphous dielectric.

About the Author

I. V. Matyushkin
Molecular Electronics Research Institute, JSC; National Research University of Electronic Technology
Russian Federation

6-1 Acad. Valieva Str., Zelenograd, Moscow 124460;

1 Shokin Sq., Zelenograd, Moscow 124498

Igor V. Matyushkin — Cand. Sci. (Phys.-Math.) (1); Associate Professor of the Department of Design and Construction of Integrated Circuits (2)



References

1. Matushkin I.V., Telminov O.A. Formal and philosophical issuesof connectionism and actual problems of neuromorphic systems design. Electronic Engineering. Series 3: Microelectronics. 2022; (2(186)): 49—59. (In Russ). https://doi.org/10.7868/S2410993222020099

2. Video clip "Strange phenomenon, ants run in circles until they all die!". (In Russ.). https://youtu.be/i_25OGxAdC0?si=Do_TMfrQV-eKxFDT

3. Painter K.J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. Journal of Theoretical Biology. 2018; 481. https://doi.org/10.1016/j.jtbi.2018.06.019

4. Gill W.B. Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. Journal of Applied Physics. 1972; 43(12): 5033—5040. https://doi.org/10.1063/1.16610655033

5. Tyutnev A., Saenko V., Pozhidaev E. Dipolar disorder formalism revisited. Chemical Physics. 2011; 389(1–3): 75—80. https://doi.org/10.1016/j.chemphys.2011.08.003

6. Gornev E.S., Matushkin I.V., Kalimova I.F. Comparative analysis of conductivity models in memristive structures based on thin films of silicon nitride. Electronic Engineering. Series 3: Microelectronics. 2021; (2(182)): 33—48.. (In Russ). https://www.elibrary.ru/mbfxfm

7. Serdouk F., Boumali A., Makhlouf A., Benkhedi M.L. Solutions of q-deformed multiple-trapping model (MTM) for charge carrier transport from time-of-flight transient (TOF) photo-current in amorphous semiconductors. Revista Mexicana de Física. 2020; 66(5): 643–655. https://doi.org/10.31349/RevMexFis.66.643

8. Nikerov A.V. Transport of charge carriers in molecularly doped polymers. Diss. … Cand. Sci. Phys.-Math. MEPhI; 2016. 100 p. (In Russ.). https://www.elibrary.ru/yxlrcl

9. Dieckmann A., Bässler H., Borsenberger P.M. An assessment of the role of dipoles on the density-of-states function of disordered molecular solids. The Journal of Chemical Physics. 1993; 99(10): 8136—8141. https://doi.org/10.1063/1.465640

10. Tyutnev A., Ikhsanov R., Saenko V., Pozhidaev E. Analysis of the carrier transport in molecularly doped polymers using the multiple trapping model with the Gaussian trap distribution. Chemical Physics. 2012; 404: 88—93. https://doi.org/10.1016/j.chemphys.2012.03.004

11. Burdakov Ya.V., Saunina A.Yu., Bässler H., Köhler A., Nikitenko V.R. Modeling of charge transport in polymers with embedded crystallites. Physical Review B. 2023; 108(8/2): 085301. https://doi.org/10.1103/PhysRevB.108.085301

12. Mikhaylov A., Belov A., Korolev D., Antonov I., Kotomina V., Kotina A., Gryaznov E., Sharapov A., Koryazhkina M., Kryukov R., Zubkov S., Sushkov A., Pavlov D., Tikhov S., Morozov O., Tetelbaum D. Multilayer metal-oxide memristive device with stabilized resistive switching. Advanced Materials Technologies. 2020; 5(1): 1900607. https://doi.org/10.1002/admt.201900607

13. Guseinov D.V., Matyushkin I.V., Chernyaev N.V., Mikhaylov A.N., Pershin Y.V. Capacitive effects can make memristors chaotic. Chaos, Solitons & Fractals. 2021; 144: 110699. https://doi.org/10.1016/j.chaos.2021.110699; https://www.elibrary.ru/bukycp

14. Rossolenko A.N., Tulina N.A., Shmytko I.M., Ivanov А.А., Zotov A.V., Borisenko I.Y., Sirotkin V.V., Tulin V.A. Properties of percolation channels in planar memristive structures base on epitaxial films of oxide perovskite compounds YBa2Cu3O7-δ and La1-хSrхMnO3-δ. Izvestiya rossiiskoi akademii nauk. Seriya fizicheskaya. 2023; 87(4): 541—545. (In Russ.). https://doi.org/10.31857/S036767652270096X; https://www.elibrary.ru/noxznr

15. Pasinetti P.M., Centres P.M., Ramirez-Pastor A.J. Jamming and percolation of k2-mers on simple cubic lattices. Journal of Statistical Mechanics: Theory and Experiment. 2019; 2019(10): 103204. https://doi.org/10.1088/1742-5468/ab409c; https://www.elibrary.ru/ropxjp

16. Moskalov P.V. Percolation modeling of porous structures. Moscow: URSS; 2018. 240 p. (In Russ.). https://www.elibrary.ru/zrjswd

17. Liu J., Kang W. New chemically amplified positive photoresist with phenolic resin modified by GMA and BOC protection. Polymers. 2023; 15(7): 1598. https://doi.org/10.3390/polym15071598

18. Manouras T., Argitis P. High sensitivity resists for EUV lithography: A review of material design strategies and performance results. Nanomaterials. 2020; 10(8): 1593. https://doi.org/10.3390/nano10081593; https://www.elibrary.ru/qdbice

19. Funato S., Kinoshita Y., Kudo T., Masuda S., Okazaki H., Padmanaban M., Przybilla K.J., Suehiro N., Pawlowski G. Photodecomposable bases. A novel concept to stabilize chemically amplified resists. Journal of Photopolymer Science and Technology. 1995; 8(4): 543—553. https://doi.org/10.2494/photopolymer.8.543

20. Foulger S.H., Bandera Yu., Grant B., Vilčáková J., Sáha P. Exploiting multiple percolation in two-terminal memristor to achieve a multitude of resistive states. Journal of Materials Chemistry C. 2021; 9(28): 8975—8986. https://doi.org/10.1039/d1tc00987g


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (B)    
Indexing metadata ▾

Review

For citations:


Matyushkin I.V. Problems of synthesis of connectionist representations and continuum models of the environs on the example of memristors. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):117-124. (In Russ.) https://doi.org/10.17073/1609-3577j.met202311.567

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)