Modeling of the quantum dynamics of frustrated networks of Josephson junctions
https://doi.org/10.17073/1609-3577j.met202312.570
Abstract
We report a theoretical study of the macroscopic quantum dynamics in frustrated networks of interacting Josephson junctions (f-NJJs). We consider two exemplary types of f-NJJs: quasi-1D sawtooth arrays and 2D Kagome lattice of small (quantum) Josephson junctions. The frustration is provided by periodically arranged 0- and π-Josephson junctions. In the frustration regime the clockwise (anticlockwise) persistent currents penetrate each basic cell, i.e., three superconducting islands connected by Josephson junctions. Collective quantum dynamics of persistent currents is described by the effective interacting spins Hamiltonian where we take into account the quantum superposition of persistent currents in a single cell induced by the macroscopic quantum tunneling of Josephson phases and a long- range interaction between persistent currents. Two types of interaction are discussed: charge interaction between superconducting islands in sawtooth arrays and topological constraints in Kagome lattice. We demonstrate that the long-interaction between spins in these f-NJJs allows one to realize the various collective quantum phases with a large quantum entanglement. We anticipate that f-NJJs can be a perspective platform for modeling complex strongly correlated electronic solid state, molecular, and biological systems, as well as frustrated magnetic systems.
Keywords
About the Authors
P. S. BurtsevRussian Federation
4-1 Leninsky Ave., Moscow 119049
Pavel S. Burtsev — Laboratory Research Assistant, Master's Degree, Quantum Design Center
R. A. Migdisov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Roman A. Migdisov — Laboratory Research Assistant, Master's Degree, Quantum Design Center
N. A. Maleeva
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Nataliya A. Maleeva — Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory for Cryoelectrinic Systems
M. V. Fistul
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Mikhail V. Fistul — Cand. Sci. (Phys.-Math.), Leading Researcher, Laboratory of Superconducting Quantum Technologies
References
1. Beloborodov I.S., Efetov K.B., Lopatin A.V., Vinokur V.M. Granular electronic systems. Reviews of Modern Physics. 2007; 79(2): 469. https://doi.org/10.1103/RevModPhys.79.469
2. van der Zant H.S.J., Elion W.J., Geerligs L.J., Mooij J.E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Physical Review B. Condensed matter. 1996; 54(14): 10081. https://doi.org/10.1103/PhysRevB.54.10081
3. Fazio R., van der Zant H.S.J. Quantum phase transitions and vortex dynamics in superconducting networks. Physics Reports. 2001; 355(4): 235—334. https://doi.org/10.1016/S0370-1573(01)00022-9
4. Rzchowski M.S. Phase transitions in a kagom´e lattice of Josephson junctions. Physical Review B. Condensed matter. 1997; 55: 11745—11750. https://doi.org/10.1103/PhysRevB.55.11745
5. Feofanov A.K., Oboznov V.A., Bol’ginov V.V., Lisenfeld J., Poletto S., Ryazanov V.V., Rossolenko A.N., Khabipov M., Balashov D., Zorin A.B., Dmitriev P.N., Koshelets V.P., Ustinov A.V. Implementation of superconductor/ferromagnet/ superconductor pi-shifters in superconducting digital and quantum circuits. Nature Physics. 2010; 6(8): 593—597. https://doi.org/10.1038/nphys1700
6. Jeanneret B., Benz S.P. Application of the Josephson effect in electrical metrology. The European Physical Journal Special Topics. 2009; 172(1): 181—206. https://doi.org/10.1140/epjst/e2009-01050-6
7. Mukhanov O.A. Energy-efficient single flux quantum technology. IEEE Transactions on Applied Superconductivity.2011; 21(3): 760—769. https://doi.org/0.1109/TASC.2010.2096792
8. Fedorov A.K., Akimov A.V., Biamonte J.D., Kavokin A.V., Khalili F.Ya., Kiktenko E.O., Kolachevsky N.N., Kurochkin Y.V., Lvovsky A.I., Rubtsov A.N., Shlyapnikov G.V., Straupe S.S., Ustinov A.V., Zheltikov A.M. Quantum technologies in Russia. Quantum Science and Technology. 2019; 4(4): 040501. https://doi.org/10.1088/2058-9565/ab4472
9. Acín A., Bloch I., Buhrman H., Calarco T., Eichler Ch., Eisert J., Esteve D., Gisin N., Glaser S.J., Jelezko F., Kuhr S., Lewenstein M., Riedel M.F., Schmidt P.O., Thew R., Wallraff A., Walmsley I., Wilhelm F.K. The quantum technologies roadmap: a European community view. New Journal of Physics. 2018; 20(8): 080201. https://doi.org/10.1088/1367-2630/aad1ea
10. Gyongyosi L., Imre S. A survey on quantum computing technology. Computer Science Review. 2019; 31(9): 51—71. https://doi.org/10.1016/j.cosrev.2018.11.002
11. Siddiqi I. Engineering high-coherence superconducting qubits. Nature Reviews Materials. 2021; 6(10): 875—891. https://doi.org/10.1038/s41578-021-00370-4
12. Orlando T.P., Mooij J.E., Tian L., van der Wal C.H., Levitov L.S., Lloyd S., Mazo J.J. Superconducting persistent-current qubit. Physical Review B. Condensed matter. 1999; 60(22): 15398—15413. https://doi.org/10.1103/physrevb.60.15398
13. Krantz Ph., Kjaergaard M., Yan F., Orlando T.P., Gustavsson S., Oliver W.D. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews. 2019; 6(2): 021318. https://doi.org/10.1063/1.5089550
14. Kjaergaard M., Schwartz M.E., Braumüller J., Krantz Ph., Wang J.I.-J., Gustavsson S., Oliver W.D. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics. 2020; 11: 369—395. https://doi.org/10.1146/annurev-conmatphys-031119-050605
15. King A.D., Carrasquilla J., Raymond J., Ozfidan I., Andriyash E., Berkley A., Reis M., Lanting T., Harris R., Altomare F., Boothby K., Bunyk P.I., Enderud C., Fréchette A., Hoskinson E., Ladizinsky N., Oh T., Poulin-Lamarre G., Rich Ch., Sato Y., Smirnov A.Yu., Swenson L.J., Volkmann M.H., Whittaker J., Yao J., Ladizinsky E., Johnson M.W, Hilton J., Amin M.H. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature. 2018; 560(7719): 456—460. https://doi.org/10.1038/s41586-018-0410-x
16. King A.D., Raymond J., Lanting T., Harris R., Zucca A., Altomare F., Berkley A.J., Boothby K., Ejtemaee S., Enderud C., Hoskinson E., Huang Sh., Ladizinsky E., MacDonald A.J.R., Marsden G., Molavi R., Oh T., Poulin-Lamarre G., Reis M., Rich C., Sato Y., Tsai N., Volkmann M., Whittaker J.D., Yao J., Sandvik A.W., Amin M.H. Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature. 2023; 617(7959): 61—66. https://doi.org/10.1038/s41586-023-05867-2
17. Park H., Lee H. Frustrated ising model on d-wave quantum annealing machine. Journal of the Physical Society of Japan. 2022; 91(7): 074001. https://doi.org/10.7566/JPSJ.91.074001
18. Xu K., Chen J.-J., Zeng Y., Zhang Y.-R., Song Ch., Liu W., Guo Q., Zhang P., Xu D., Deng H., Huang K., Wang H., Zhu X., Zheng D., Fan H. Emulating many-body localization with a superconducting quantum processor. Physical Review Letters. 2018; 120(5): 050507. https://doi.org/10.1103/PhysRevLett.120.050507
19. Neyenhuys O., Fistul M.V., Eremin I.M. Long-range Ising spins models emerging from frustrated Josephson junctions arrays with topological constraints. Physical Review B. Condensed matter. 2023; 108: 165413. https://doi.org/10.1103/PhysRevB.108.165413
20. Anderson P.W. The concept of frustration in spin glasses. Journal of the Less Common Metals. 1978; 62: 291—294. https://doi.org/10.1016/0022-5088(78)90040-1
21. Moessner R., Ramirez A.P. Geometrical frustration. Physics Today. 2006; 59(2): 24—29. https://doi.org/10.1063/1.2186278
22. Balents L. Spin liquids in frustrated magnets. Nature. 2010;464(7286):199–208. https://doi.org/10.1038/nature08917
23. Mi X., Sonner M., Niu M.Y. et al. Noise-resilient edge modes on a chain of superconducting qubits. Science. 2022; 378(6621): 785—790. https://doi.org/10.1126/science.abq5769
24. Douçot B., Vidal J. Pairing of cooper pairs in a fully frustrated Josephson- junction chain. Physical Review Letters. 2002; 8(22): 227005. https://doi.org/10.1103/physrevlett.88.227005
25. Heras U.L., Mezzacapo A., Lamata L., Filipp S., Wallraff A., Solano E. Digital quantum simulation of spin systems in superconducting circuits. Physical Review Letters. 2014; 112(20): 200501. https://doi.org/10.1103/PhysRevLett.112.200501
26. Nisoli C., Moessner R., Schiffer P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration. Reviews of Modern Physics. 2013; 85(4): 1473. https://doi.org/10.1103/RevModPhys.85.1473
27. Bell R.E. Frustration in physics. Physics Today. 1982; 35(8): 78—78. https://doi.org/10.1063/1.2915237
28. Gilbert I., Nisoli C., Schiffer P. Frustration by design. Physics Today. 2016; 69(7): 54—59. https://doi.org/10.1063/PT.3.3237
29. Baniodeh A., Magnani N., Lan Y., Buth G., Anson Ch.E., Richter J., Affronte M., Schnack J., Powell A.K. High spin cycles: topping the spin record for a single molecule verging on quantum criticality. npj Quantum Materials. 2018; 3(1): 10. https://doi.org/10.1038/s41535-018-0082-7
30. Han T.-H., Helton J.S., Chu Sh., Nocera D.G., Rodriguez- Rivera J.A., Broholm C., Lee Y.S. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature. 2012; 492(7429): 406–410. https://doi.org/10.1038/nature11659
31. Mahmoudian S., Rademaker L., Ralko A., Fratini S., Dobrosavljević V. Glassy dynamics in geometrically frustrated coulomb liquids without disorder. Physical Review Letters. 2015; 115(2): 025701. https://doi.org/10.1103/PhysRevLett.115.025701
32. Caputo P., Fistul M.V., Ustinov A.V. Resonances in one and two rows of triangular Josephson junction cells. Physical Review B. Condensed matter. 2001; 63(21): 214510. https://doi.org/10.1103/PhysRevB.63.214510
33. Andreanov A., Fistul M.V. Resonant frequencies and spatial correlations in frustrated arrays of Josephson type nonlinear oscillators. Journal of Physics A: Mathematical and Theoretical. 2019; 52(10): 105101. https://doi.org/10.1088/1751-8121/ab013d
34. Andreanov A., Fistul M.V. Frustration-induced highly anisotropic magnetic patterns in the classical xy model on the kagome lattice. Physical Review B. Condensed matter. 2020; 102(14): 140405. https://doi.org/10.1103/physrevb.102.140405
35. Pop I.M., Hasselbach K., Buisson O., Guichard W., Pannetier B., Protopopov I. Measurement of the current- phase relation in Josephson junction rhombi chains. Physical Review B. Condensed matter. 2008; 78(10): 104504. https://doi.org/10.1103/PhysRevB.78.104504
36. Rizzi M., Cataudella V., Fazio R. 4e-condensation in a fully frustrated Josephson junction diamond chain. Physical Review B. Condensed matter. 2006; 73(10): 100502(R). https://doi.org/10.1103/PhysRevB.73.100502
37. Protopopov I.V., Feigel’man M.V. Anomalous periodicity of supercurrent in long frustrated Josephson-junction rhombi chains. Physical Review B. Condensed matter. 2004; 70(18): 184519. https://doi.org/10.1103/PhysRevB.70.184519
38. Hilgenkamp H. Pi-phase shift Josephson structures. Superconductor Science and Technology. 2008; 21(3): 034011. https://doi.org/10.1088/0953-2048/21/3/034011
39. Sondhi Sh.L., Girvin S.M., Carini J.P., Shahar D. Continuous quantum phase transitions. Reviews of Modern Physics. 1997; 69(1): 315. https://doi.org/10.1103/RevModPhys.69.315
40. Haviland D.B., Andersson K., Agren P. Superconducting and insulating behavior in one-dimensional Josephson junction arrays. Journal of Low Temperature Physics. 2000; 118(5): 733—749. https://doi.org/10.1023/A:1004603814529
41. Il'ichevE.V. Introduction to the dynamics of superconducting quantum circuits. Novosibirsk: NGTU; 2018. 174 p. (In Russ.)
42. Landau L.D., Lifshitz E.M. Quantum mechanics: non-relativistic theory. Elsevier; 2013. Vol. 3. 300 p.
43. Derzhko O., Honecker A., Richter J. Low-temperature thermodynamics for a flat-band ferromagnet: Rigorous versus numerical results. Physical Review B. Condensed matter. 2007; 76(22): 220402. https://doi.org/10.1103/physrevb.76.220402
Review
For citations:
Burtsev P.S., Migdisov R.A., Maleeva N.A., Fistul M.V. Modeling of the quantum dynamics of frustrated networks of Josephson junctions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):154-164. (In Russ.) https://doi.org/10.17073/1609-3577j.met202312.570