Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Influence of the composition of the initial reagents on the structural and magnetic properties of Sr1.5La0.5FeMoO6-δ

https://doi.org/10.17073/1609-3577j.met202401.572

Abstract

This paper presents investigations of phase transformations during the crystallization of Sr1.5La0.5FeMoO6-δ by the solid-phase method from a stoichiometric mixture of MoO3, La2O3, Fe2O3 and SrCO3 oxides, as well as precursors Sr0.5La0.5FeO3 and SrMoO4. Using the XRD and thermogravimetric analyses, influence of synthesis modes on the chemical processes during the formation of double perovskite was investigated. The synthesis of lanthanum-strontium ferromolybdate involves several series-parallel stages. Initially, the compound is enriched with iron, and its composition shifts towards higher molybdenum content. With increasing temperature, concentration of double perovskite increases while retaining the secondary phase, indicating the difficulty of solid-phase reactions. To reduce the influence of reaction intermediates, precursor materials are recommended. Optimized heating modes facilitated the production of single-phase Sr1.5La0.5FeMoO6-δ powder, exhibiting 82% superstructural ordering. It has presented a Curie temperature of 450 K and a magnetization of 40.9 (A⋅m2)/kg at T = 77 K in B ≥ 0.86 T. 

About the Authors

M. V. Yarmolich
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

19 P. Brovka Str., Minsk 220072

Marta V. Yarmolich — Cand. Sci. (Phys.-Math.), Head of Department



N. A. Kalanda
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

19 P. Brovka Str., Minsk 220072

Nikolay A. Kalanda — Dr. Sci. (Phys.-Math.), Leading Researcher



A. V. Petrov
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

19 P. Brovka Str., Minsk 220072

Alexander V. Petrov — Cand. Sci. (Phys.-Math.), Senior Researcher



D. A. Kiselev
National University of Science and Technology MISIS
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Dmitry A. Kiselev — Cand. Sci. (Phys.-Math.), Head of the Laboratory



O. Yu. Ponomareva
Joint Institute for Nuclear Research
Russian Federation

6 Joliot-Curie Str., Dubna 141980

Olga Yu. Ponomareva — Cand. Sci. (Chem.), Researcher



T. N. Vershinina
Joint Institute for Nuclear Research
Russian Federation

6 Joliot-Curie Str., Dubna 141980

Tatiana N. Vershinina — Cand. Sci. (Phys.-Math.), Senior Researcher



N. A. Bosak
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

68-2 Nezavisimosti Ave., Minsk 220072

Nikolay A. Bosak — Cand. Sci. (Phys.-Math.), Leading Researcher



S. K. Lazarouk
Belarusian State University of Informatics and Radioelectronics
Belarus

6 P. Brovka Str., Minsk 220013

Serguei K. Lazarouk — Dr. Sci. (Phys.-Math.), Head of the Laboratory



D. Sangaa
Institute of Physics and Technology of the Mongolian Academy of Sciences
Mongolia

54B Peace Ave., Ulaanbaatar 13330

Deleg Sangaa — Dr. Sci. (Phys.-Math.), Senior Researcher



S. Munkhtsetseg
National University of Mongolia
Mongolia

P.O.Box 46A/523, Sukhbaatar District, Ulaanbaatar 14201

Sambuu Munkhtsetseg — PhD, Senior Lecturer



References

1. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronic vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389

2. Zutic I., Fabian J., Das Sarma S. Spintronics: fundamentals and applications. Reviews of Modern Physics. 2004; 76(2): 323—410. https://doi.org/10.1103/RevModPhys.76.323

3. Kalanda N., Bobrikov I., Yarmolich M., Kuts V., Huang L., Hwang C., Kim D.-H. Interrelation among superstructural ordering, oxygen nonstoichiometry and lattice strain of double perovskite Sr2FeMoO6-δ materials. Journal of Materials Science. 2021; 56: 11698—11710. https://doi.org/10.1007/s10853-021-06072-0

4. Jungwirth T., Sinova J., Masek J., Kucera J., MacDonald A.H. Theory of ferromagnetic (III, Mn)V semiconductors. Reviews of Modern Physics. 2006; 78(3): 809—864. https://doi.org/10.1103/RevModPhys.78.809

5. Serrate D., DeTeresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007; 19(2): 023201. https://doi.org/10.1088/0953-8984/19/2/023201

6. Topwal D., Sarma D.D., Kato H., Tokura Y.,

7. Avignon M. Structural and magnetic properties of

8. Sr2Fe1+xMo1-xO6 (-1 ⩽ x ⩽ 0.25). Physical Review B. 2006; 73(9): 0944191. https://doi.org/10.1103/PhysRevB.73.094419

9. Karki S.B., Ramezanipour F. Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe, Co, and Ni). Materials Today Chemistry. 2019; 13: 25—33. https://doi.org/10.1016/j.mtchem.2019.04.002

10. Balcells L., Navarro J., Bibes M., Roig A., Martinez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics Letters. 2001; 78(6): 14. https://doi.org/10.1063/1.1346624

11. Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002; 320(1–4): 13—17. https://doi.org/10.1016/S0921-4526(02)00608-7

12. Park B., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6. Journal of Magnetism and Magnetic Materials. 2004; 272–276(Pt 3): 1851—1852. https://doi.org/10.1016/j.jmmm.2003.12.429

13. Menéndez N., Garcia-Hernandez M., Sanchez D., Tornero J.D., Martinez J.L., Alonso J.A. Charge transfer and disorder in double perovskites. American Chemical Society. 2004; 16(18): 3565—3572. https://doi.org/10.1021/cm049305t

14. Sarma D.D. A new class of magnetic materials:

15. Sr2FeMoO6 and related compounds. Current Opinion in Solid State and Materials Science. 2001; 5(4): 261—268. https://dx.doi.org/10.1016/S1359-0286(01)00014-6

16. Szotek Z., Temmerman W.M., Svane A., Petit L., Winter H. Electronic structure of half-metallic double perovskites. Physical Review B. 2003; 68(10): 104411. https://doi.org/10.1103/PhysRevB.68.104411

17. Sarma D.D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic structure of Sr2FeMoO6. Physical Review Letters. 2000; 85(12): 2549—2552. https://doi.org/10.1103/PhysRevLett.85.2549

18. Navarro J., Frontera C., Balcells LI., Martinez B., Fontcuberta J. Raising the Curie temperature in

19. Sr2FeMoO6 double perovskites by electron doping. Physical Review B. 2001; 64(9): 09241. https://doi.org/10.1103/PhysRevB.64.092411

20. Zhong W., Wu X.L., Tang N.J., Liu W., Chen W., Au C.T., Du Y.W. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. The European Physical Journal B – Condensed Matter and Complex Systems. 2004; 41: 213—217. https://doi.org/10.1140/epjb/e2004-00312-9

21. Zhong W., Tang N.J., Wu X.L., Liu W., Chen W., Jiang H.Y., Du Y.W. Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6. Journal of Magnetism and Magnetic Materials. 2004; 282: 151—155. https://doi.org/10.1016/j.jmmm.2004.04.036

22. Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Physical Review B. 2000; 61(1): 422. https://doi.org/10.1103/PhysRevB.61.422

23. Dhahri A., Dhahri J., Zemni S., Oumezzine M., Vincent H. Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6. Journal of Alloys and Compounds. 2006; 420(1–2): 15—19. https://doi.org/10.1016/j.jallcom.2005.10.030

24. Moritomo Y., Xu S., Akimoto T., Machida A., Hamada N., Ohoyama K., Nishibori E., Takata M., Sakata M. Electron doping effects in conducting Sr2FeMoO6. Physical Review B. 2000; 62(21): 14224. https://doi.org/10.1103/PhysRevB.62.14224

25. Garcia-Hernandez M., Martinez J.L., Martinez-Lope M.J., Casais M.T., Alonso J.A. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Physical Review Letters. 2001; 86(11–12): 2443. https://doi.org/10.1103/PhysRevLett.86.2443

26. Navarro J., Nogues J., Munoz J.S., Fontcuberta J. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Physical Review B. 2003; 67(17): 174416. https://doi.org/10.1103/PhysRevB.67.174416

27. Kahoul A., Aziz A., Colis S., Stoelfer D., Moubah R., Schmerber G., Leuvrey C. Effect of La doping on the properties of Sr2-xLaxFeMoO6 double perovskite. Journal of Applied Physics. 2008; 104(12): 123903. https://doi.org/10.1063/1.3043586

28. Jana S., Meneghini C., Sanyal P., Sarkar S., Saha-Dasgupta T., Karis O., Ray S. Signature of an antiferromagnetic metallic ground state in heavily electron-doped Sr2FeMoO6. Physical Review B. 2012; 86(5): 054433. https://doi.org/10.1103/PhysRevB.86.054433

29. Sanyal P., Das H., Saha-Dasgupta T. Evidence of kinetic-energy-driven antiferromagnetism in double perovskites: a first-principles study of La-doped Sr2FeMoO6. Physical Review B. 2009; 80(22): 224412. https://doi.org/10.1103/PhysRevB.80.224412

30. Fang, T.-T., Lin J.-C. Formation kinetics

31. of Sr2FeMoO6 double perovskite. Journal of Materials Science. 2005; 40(1): 683—686. https://doi.org/10.1007/s10853-005-6307-8

32. Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method. Beilstein Journal of. Nanotechnology. 2016; 7: 1202—1207. https://doi.org/10.3762/bjnano.7.111

33. Cernea M., Vasiliu F., Bartha C., Plapcianu C., Merconiu I., Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceramics International. 2014; 40(8 Pt A): 11601—11609. https://doi.org/10.1016/j.ceramint.2014.03.142

34. Kalanda N.A., Gurskii A.L., Yarmolich M.V., Petrov A.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Sequence of phase transformations at the formation of the stronitum chrome-molybdate compound. Modern Electronic Materials. 2019; 5(2): 69—75. https://doi.org/10.3897/j.moem.5.2.50758

35. Jurca B., Berthon J., Dragoe N., Berthet P., Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. Journal of Alloys and Compounds. 2009; 474(1–2): 416—423. https://doi.org/10.1016/j.jallcom.2008.06.100

36. Kraus W., Nolze G. POWDERCELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29: 301—303. https://doi.org/10.1107/S0021889895014920

37. Rodríguez-Carvajal J. Recent developments of the program FULLPROF in Commission on Powder Diffraction (IUCr). Newsletter. 2001; 26: 12—19.


Supplementary files

Review

For citations:


Yarmolich M.V., Kalanda N.A., Petrov A.V., Kiselev D.A., Ponomareva O.Yu., Vershinina T.N., Bosak N.A., Lazarouk S.K., Sangaa D., Munkhtsetseg S. Influence of the composition of the initial reagents on the structural and magnetic properties of Sr1.5La0.5FeMoO6-δ. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):107-116. (In Russ.) https://doi.org/10.17073/1609-3577j.met202401.572

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)