Influence of the composition of the initial reagents on the structural and magnetic properties of Sr1.5La0.5FeMoO6-δ
https://doi.org/10.17073/1609-3577j.met202401.572
Abstract
This paper presents investigations of phase transformations during the crystallization of Sr1.5La0.5FeMoO6-δ by the solid-phase method from a stoichiometric mixture of MoO3, La2O3, Fe2O3 and SrCO3 oxides, as well as precursors Sr0.5La0.5FeO3 and SrMoO4. Using the XRD and thermogravimetric analyses, influence of synthesis modes on the chemical processes during the formation of double perovskite was investigated. The synthesis of lanthanum-strontium ferromolybdate involves several series-parallel stages. Initially, the compound is enriched with iron, and its composition shifts towards higher molybdenum content. With increasing temperature, concentration of double perovskite increases while retaining the secondary phase, indicating the difficulty of solid-phase reactions. To reduce the influence of reaction intermediates, precursor materials are recommended. Optimized heating modes facilitated the production of single-phase Sr1.5La0.5FeMoO6-δ powder, exhibiting 82% superstructural ordering. It has presented a Curie temperature of 450 K and a magnetization of 40.9 (A⋅m2)/kg at T = 77 K in B ≥ 0.86 T.
Keywords
About the Authors
M. V. YarmolichBelarus
19 P. Brovka Str., Minsk 220072
Marta V. Yarmolich — Cand. Sci. (Phys.-Math.), Head of Department
N. A. Kalanda
Belarus
19 P. Brovka Str., Minsk 220072
Nikolay A. Kalanda — Dr. Sci. (Phys.-Math.), Leading Researcher
A. V. Petrov
Belarus
19 P. Brovka Str., Minsk 220072
Alexander V. Petrov — Cand. Sci. (Phys.-Math.), Senior Researcher
D. A. Kiselev
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Dmitry A. Kiselev — Cand. Sci. (Phys.-Math.), Head of the Laboratory
O. Yu. Ponomareva
Russian Federation
6 Joliot-Curie Str., Dubna 141980
Olga Yu. Ponomareva — Cand. Sci. (Chem.), Researcher
T. N. Vershinina
Russian Federation
6 Joliot-Curie Str., Dubna 141980
Tatiana N. Vershinina — Cand. Sci. (Phys.-Math.), Senior Researcher
N. A. Bosak
Belarus
68-2 Nezavisimosti Ave., Minsk 220072
Nikolay A. Bosak — Cand. Sci. (Phys.-Math.), Leading Researcher
S. K. Lazarouk
Belarus
6 P. Brovka Str., Minsk 220013
Serguei K. Lazarouk — Dr. Sci. (Phys.-Math.), Head of the Laboratory
D. Sangaa
Mongolia
54B Peace Ave., Ulaanbaatar 13330
Deleg Sangaa — Dr. Sci. (Phys.-Math.), Senior Researcher
S. Munkhtsetseg
Mongolia
P.O.Box 46A/523, Sukhbaatar District, Ulaanbaatar 14201
Sambuu Munkhtsetseg — PhD, Senior Lecturer
References
1. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronic vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389
2. Zutic I., Fabian J., Das Sarma S. Spintronics: fundamentals and applications. Reviews of Modern Physics. 2004; 76(2): 323—410. https://doi.org/10.1103/RevModPhys.76.323
3. Kalanda N., Bobrikov I., Yarmolich M., Kuts V., Huang L., Hwang C., Kim D.-H. Interrelation among superstructural ordering, oxygen nonstoichiometry and lattice strain of double perovskite Sr2FeMoO6-δ materials. Journal of Materials Science. 2021; 56: 11698—11710. https://doi.org/10.1007/s10853-021-06072-0
4. Jungwirth T., Sinova J., Masek J., Kucera J., MacDonald A.H. Theory of ferromagnetic (III, Mn)V semiconductors. Reviews of Modern Physics. 2006; 78(3): 809—864. https://doi.org/10.1103/RevModPhys.78.809
5. Serrate D., DeTeresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007; 19(2): 023201. https://doi.org/10.1088/0953-8984/19/2/023201
6. Topwal D., Sarma D.D., Kato H., Tokura Y.,
7. Avignon M. Structural and magnetic properties of
8. Sr2Fe1+xMo1-xO6 (-1 ⩽ x ⩽ 0.25). Physical Review B. 2006; 73(9): 0944191. https://doi.org/10.1103/PhysRevB.73.094419
9. Karki S.B., Ramezanipour F. Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe, Co, and Ni). Materials Today Chemistry. 2019; 13: 25—33. https://doi.org/10.1016/j.mtchem.2019.04.002
10. Balcells L., Navarro J., Bibes M., Roig A., Martinez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics Letters. 2001; 78(6): 14. https://doi.org/10.1063/1.1346624
11. Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002; 320(1–4): 13—17. https://doi.org/10.1016/S0921-4526(02)00608-7
12. Park B., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6. Journal of Magnetism and Magnetic Materials. 2004; 272–276(Pt 3): 1851—1852. https://doi.org/10.1016/j.jmmm.2003.12.429
13. Menéndez N., Garcia-Hernandez M., Sanchez D., Tornero J.D., Martinez J.L., Alonso J.A. Charge transfer and disorder in double perovskites. American Chemical Society. 2004; 16(18): 3565—3572. https://doi.org/10.1021/cm049305t
14. Sarma D.D. A new class of magnetic materials:
15. Sr2FeMoO6 and related compounds. Current Opinion in Solid State and Materials Science. 2001; 5(4): 261—268. https://dx.doi.org/10.1016/S1359-0286(01)00014-6
16. Szotek Z., Temmerman W.M., Svane A., Petit L., Winter H. Electronic structure of half-metallic double perovskites. Physical Review B. 2003; 68(10): 104411. https://doi.org/10.1103/PhysRevB.68.104411
17. Sarma D.D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic structure of Sr2FeMoO6. Physical Review Letters. 2000; 85(12): 2549—2552. https://doi.org/10.1103/PhysRevLett.85.2549
18. Navarro J., Frontera C., Balcells LI., Martinez B., Fontcuberta J. Raising the Curie temperature in
19. Sr2FeMoO6 double perovskites by electron doping. Physical Review B. 2001; 64(9): 09241. https://doi.org/10.1103/PhysRevB.64.092411
20. Zhong W., Wu X.L., Tang N.J., Liu W., Chen W., Au C.T., Du Y.W. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. The European Physical Journal B – Condensed Matter and Complex Systems. 2004; 41: 213—217. https://doi.org/10.1140/epjb/e2004-00312-9
21. Zhong W., Tang N.J., Wu X.L., Liu W., Chen W., Jiang H.Y., Du Y.W. Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6. Journal of Magnetism and Magnetic Materials. 2004; 282: 151—155. https://doi.org/10.1016/j.jmmm.2004.04.036
22. Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Physical Review B. 2000; 61(1): 422. https://doi.org/10.1103/PhysRevB.61.422
23. Dhahri A., Dhahri J., Zemni S., Oumezzine M., Vincent H. Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6. Journal of Alloys and Compounds. 2006; 420(1–2): 15—19. https://doi.org/10.1016/j.jallcom.2005.10.030
24. Moritomo Y., Xu S., Akimoto T., Machida A., Hamada N., Ohoyama K., Nishibori E., Takata M., Sakata M. Electron doping effects in conducting Sr2FeMoO6. Physical Review B. 2000; 62(21): 14224. https://doi.org/10.1103/PhysRevB.62.14224
25. Garcia-Hernandez M., Martinez J.L., Martinez-Lope M.J., Casais M.T., Alonso J.A. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Physical Review Letters. 2001; 86(11–12): 2443. https://doi.org/10.1103/PhysRevLett.86.2443
26. Navarro J., Nogues J., Munoz J.S., Fontcuberta J. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Physical Review B. 2003; 67(17): 174416. https://doi.org/10.1103/PhysRevB.67.174416
27. Kahoul A., Aziz A., Colis S., Stoelfer D., Moubah R., Schmerber G., Leuvrey C. Effect of La doping on the properties of Sr2-xLaxFeMoO6 double perovskite. Journal of Applied Physics. 2008; 104(12): 123903. https://doi.org/10.1063/1.3043586
28. Jana S., Meneghini C., Sanyal P., Sarkar S., Saha-Dasgupta T., Karis O., Ray S. Signature of an antiferromagnetic metallic ground state in heavily electron-doped Sr2FeMoO6. Physical Review B. 2012; 86(5): 054433. https://doi.org/10.1103/PhysRevB.86.054433
29. Sanyal P., Das H., Saha-Dasgupta T. Evidence of kinetic-energy-driven antiferromagnetism in double perovskites: a first-principles study of La-doped Sr2FeMoO6. Physical Review B. 2009; 80(22): 224412. https://doi.org/10.1103/PhysRevB.80.224412
30. Fang, T.-T., Lin J.-C. Formation kinetics
31. of Sr2FeMoO6 double perovskite. Journal of Materials Science. 2005; 40(1): 683—686. https://doi.org/10.1007/s10853-005-6307-8
32. Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method. Beilstein Journal of. Nanotechnology. 2016; 7: 1202—1207. https://doi.org/10.3762/bjnano.7.111
33. Cernea M., Vasiliu F., Bartha C., Plapcianu C., Merconiu I., Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceramics International. 2014; 40(8 Pt A): 11601—11609. https://doi.org/10.1016/j.ceramint.2014.03.142
34. Kalanda N.A., Gurskii A.L., Yarmolich M.V., Petrov A.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Sequence of phase transformations at the formation of the stronitum chrome-molybdate compound. Modern Electronic Materials. 2019; 5(2): 69—75. https://doi.org/10.3897/j.moem.5.2.50758
35. Jurca B., Berthon J., Dragoe N., Berthet P., Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. Journal of Alloys and Compounds. 2009; 474(1–2): 416—423. https://doi.org/10.1016/j.jallcom.2008.06.100
36. Kraus W., Nolze G. POWDERCELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29: 301—303. https://doi.org/10.1107/S0021889895014920
37. Rodríguez-Carvajal J. Recent developments of the program FULLPROF in Commission on Powder Diffraction (IUCr). Newsletter. 2001; 26: 12—19.
Supplementary files
Review
For citations:
Yarmolich M.V., Kalanda N.A., Petrov A.V., Kiselev D.A., Ponomareva O.Yu., Vershinina T.N., Bosak N.A., Lazarouk S.K., Sangaa D., Munkhtsetseg S. Influence of the composition of the initial reagents on the structural and magnetic properties of Sr1.5La0.5FeMoO6-δ. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):107-116. (In Russ.) https://doi.org/10.17073/1609-3577j.met202401.572