Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Thermovoltaic response of thin-film bilayered structures based on zinc oxide

https://doi.org/10.17073/1609-3577j.met202403.575

Abstract

A method for measuring the thermovoltaic effect in heterogeneous media with a gradient distribution of the dopant concentration, leading to a gradient distribution of the charge carrier concentration, is proposed. Samples of zinc oxide doped with iron were obtained by ion beam sputtering on a thin foil substrate of tantalum (to measure the thermovoltaic effect), citall (to measure the Hall effect) and silicon to study the structure. The content of the dopant in the samples varied from xFe = 0.34 to 4.18 at.%. X-ray diffraction phase analysis studies have shown that the crystal structure of hexagonal zinc oxide is characteristic for all samples. The films are predominantly oriented in the direction [002]. The concentration of charge carriers in the layers of experimental samples, determined using the Hall effect on the ECOPIA 5500 installation in a constant magnetic field with a strength of 0.5 T, varies between 1016–1020 cm-3. The samples had an electronic type of conductivity.

To study the thermovoltaic effect, two-layer zinc oxide samples doped with iron and having different concentrations of charge carriers were synthesized. The thermovoltaic effect was studied using the example of two-layer thin-film samples based on zinc oxide with different content of alloying iron impurities using the proposed technique. It was found that the highest value of the thermovoltaic response (U ~ 80 µV) is observed in a two-layer thin-film sample with a greater difference in the concentration of charge carriers between the layers (Δn ≈ 2·103 cm-3). The observed saturation of the thermovoltaic response is associated with the onset of dynamic equilibrium between the processes of diffusion of charge carriers from a layer with a high concentration of carriers to a layer with a low concentration and the process of carrier drift due to an internal electric field.

About the Authors

V. A. Makagonov
Voronezh State Technical University
Russian Federation

84 20-letiya Oktyabrya Str., Voronezh 394006

Vladimir A. Makagonov — Cand. Sci. (Phys.-Math.), Senior Researcher at the Department of Solid-State Electronics, Associate Professor of the Department of Physics



K. S. Gabriels
Voronezh State Technical University
Russian Federation

84 20-letiya Oktyabrya Str., Voronezh 394006

Konstantin S. Gabriels — Cand. Sci. (Phys.-Math.), Researcher at the Department of Solid-State Electronics



Yu. E. Kalinin
Voronezh State Technical University
Russian Federation

84 20-letiya Oktyabrya Str., Voronezh 394006

Yuri E. Kalinin — Dr. Sci. (Phys.-Math.), Professor of the Department of Solid-State Electronics



A. Yu. Lopatin
Voronezh State Technical University
Russian Federation

84 20-letiya Oktyabrya Str., Voronezh 394006

Artem Yu. Lopatin — Postgraduate Student of the Department of Solid-State Electronics



L. A. Bliznyuk
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

19 P. Brovka Str., Minsk 220072

Ludmila A. Bliznyuk — Laboratory Manager, Electronic Ceramics Laboratory



A. K. Fedotov
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Alexander K. Fedotov — Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Laboratory of Advanced Materials Physics



References

1. Pronin I.A., Averin I.A., Bozhinova A.S., Georgieva A.C., Dimitrov D.C., Karmanov A.A., Moshnikov V.A., Papazova K.I., Terukov E.I., Yakushova N.D. Thermovoltaic effect in zinc oxide inhomogeneously doped with impurities with variable valence. Pis'ma v zhurnal tekhnicheskoi fiziki. 2015; 41(19): 22—28. (In Russ.). https://journals.ioffe.ru/articles/42354

2. Takahashi T., Yamada O. Mechanism of voltage generation during phase change of FeS single crystals. Journal of Physics and Chemistry of Solids. 1976; 37(2): 161-165. https://doi.org/10.1016/0038-1098(75)90510-4

3. Pronin I.A., Yakushova N.D., Dimitrov D.C., Krasteva L.K., Papazova K.I., Karmanov A.A., Averin I.A., Georgieva A.C., Moshnikov V.A., Terukov E.I. A new type of gas sensors based on the thermovoltaic effect in zinc oxide inhomogeneously doped with impurities of variable valence. Pis'ma v zhurnal tekhnicheskoi fiziki, 2017; 43(18): 11—16. (In Russ.). https://doi.org/10.21883/PJTF.2017.18.45028.16754

4. Kaminsky V.V., Solovyov S.M., Sudak N.M., Zaldastanishvili M.I. Detection of the thermovoltaic effect in a heterostructure based on lead telluride. Pis'ma v zhurnal tekhnicheskoi fiziki. 2020; (1): 52. (In Russ.). https://doi.org/10.21883/PJTF.2020.01.48866.17834

5. Kaminsky V.V., Kazanin V.V. Thermovoltaic effect in thin-film structures based on samarium sulfide. Pis'ma v zhurnal tekhnicheskoi fiziki, 2008; (8): 92—94. (In Russ.). https://journals.ioffe.ru/articles/12044

6. Kaminsky V.V., Solovyov S.M. The emergence of an electromotive force when the valence of samarium ions changes during a phase transition in SmS single crystals. Fizika tverdogo tela. 2001; 43(3): 423—426. (In Russ.). https://journals.ioffe.ru/articles/38082

7. Kaminsky V.V., Kazanin M.M., Solovyov S.M., Golubkov A.V. Thermovoltaic effect in heterostructures based on samarium sulfide with the composition Sm1-xEuxS. Zhurnal tekhnicheskoi fiziki, 2012; (6): 142—144. (In Russ.). https://journals.ioffe.ru/articles/10636

8. Egorov V.M., Kaminsky V.V. Endothermic effect when heating semiconductor samarium sulfide. Fizika tverdogo tela, 2009; 51(8): 1521—1522. (In Russ.). https://journals.ioffe.ru/articles/2352

9. Kaminsky V.V., Vasiliev L.N., Romanova M.V., Solovyov S.M. The mechanism of occurrence of electromotive force during heating of SmS crystals. Fizika tverdogo tela. 2001; 43(6): 997—999. (In Russ.). https://journals.ioffe.ru/articles/38191

10. Kaminsky V.V., Didik V.A., Kazanin M.M., Romanova M.V., Solovyov S.M. Thermovoltaic effect in polycrystalline SmS. Pis'ma v zhurnal tekhnicheskoi fiziki. 2009; 35(21): 16—22. (In Russ.). https://journals.ioffe.ru/articles/14013

11. Grevtsev M.A., Kazakov S.A., Kazanin M.M., Kaminsky V.V. Electrical characteristics of a thermovoltaic element based on samarium sulfide. Zhurnal tekhnicheskoi fiziki. 2020; 90(10): 1739—1740. (In Russ.). https://doi.org/10.21883/JTF.2020.10.49807.247-19

12. Groshev I., Polukhin I. Samarium sulfide and the latest developments based on it. Komponenty i tekhnologii, 2014; (8): 126—133. (In Russ.). https://www.elibrary.ru/item.asp?id = 21884102

13. Patent 2303834 (RF). Thermoelectric generator (variants) and methods of manufacturing a thermoelectric generator. Kaminsky V.V., Golubkov A.V., Kazanin M.M., Pavlov I.V., Solovyov S.M., Sharenkova N.V., 2007. https://rusneb.ru/catalog/000224_000128_0002303834_20070727_C2_RU/

14. Fedotov A.K., Pashkevich A.V., Fedotova J.A., Fedotov A.S., Kołtunowicz T.N., Zukowski P., Ali Arash Ronassi, Fedotova V.V., Svito I.A., Budzyński M. Electron transport and thermoelectric properties of ZnO ceramics doped with Fe. J. Alloys Compds. 2021; 854: 156169. https://doi.org/10.1016/j.jallcom.2020.156169

15. Fedotov A.K., Pashkevich A.V., Khovailo V.V., Kharchenko A.A., Poddenezhny E.N., Bliznyuk L.A., Fedotova V.V. Electrical and thermoelectric properties of ceramics based on ZnO, alloyed with iron and cobalt. Rossiiskie nanotekhnologii, 2021; 16: 117—125. (In Russ.) https://doi.org/10.1134/S1992722321030043

16. Winarski D. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method. Thesis diss. of master science. Graduate College of Bowling Green State University; 2015.

17. Semikina T.V., Komashchenko V.N., Shmyreva L.N. Oxide electronics as one of the directions of transparent electronics. Elektronika i svyaz'. Tematicheskii vypusk «Elektronika i nanotekhnologii», 2010; (3): 20—28. (In Russ.). https://www.researchgate.net/publication/338347890_KPI-transpelectr-2010_3_20_28

18. Hjiria M., El Mir L., Leonardi S.G., Pistone A. Al-doped ZnO for highly sensitive CO gas sensors. Sensors and Actuators B: Chemical, 2014; 196: 413—420. https://doi.org/10.1016/j.snb.2014.01.068

19. Hosono H., Ueda K. Transparent Conductive Oxides. Springer, Cham., 2017: 42—51. https://doi.org/10.1007/978-3-319-48933-9_58

20. Ong C.B., Ng L.Y., Mohammad A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018; 81(1): 536—551. https://doi.org/10.1016/j.rser.2017.08.020

21. Deng H., Russell J.J., Lamb R.N., Jiang B. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films. 2004; 458(1): 43—46. https://doi.org/10.1016/j.tsf.2003.11.288

22. Shinagawa T., Otomo S., Katayama J.-I. Electroless deposition of transparent conducting and (0001)-oriented ZnO films from aqueous solutions. Electrochemica Acta. 2007; 53: 1170—1174. https://doi.org/10.1016/j.electacta.2007.03.056

23. Heo Y.W., Norton D.P., Pearton S.J. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J. Appl. Phys. 2005; 98: 73—81. https://doi.org/10.1063/1.2064308

24. Liu T.Q., Sakurai O., Mizutani N., Kato M. Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques. J. Mater Science. 1986; 21(10): 3698—3702. https://doi.org/10.1007/BF02403024

25. Burakov V.S., Tarasenko N.V., Nevar E.A., Nedel'ko M.I. Morphology and optical properties of zinc oxide nanostructures synthesized by the methods of thermal and discharge sputtering. Zhurnal tekhnicheskoi fiziki, 2011; 81(2): 89—97. (In Russ.). https://journals.ioffe.ru/articles/10229

26. Nesvetaev D.G., Kaidashev E.M., Puzikov A.S. Pulsed laser spraying of ZnO nanostructures. Inzhenernyi vestnik Dona. 2013; (4): 50—55. (In Russ.)

27. Zalesskii V.B., Leonova T.R., Goncharova O.V., Viktorov I.A., Gremenok V.F., Zaretskaya E.P. Production of thin zinc oxide films by reactive magnetron sputtering and investigation of their electrical and optical characteristics. Рhysics and chemistry of solid state. 2005; 6(1): 44—49. (In Russ.).

28. Zhilin D.A., Lyanguzov N.V., Kaidashev E.M. UV photodetector based on nanorods and zinc oxide films. Inzhenernyi vestnik Dona. 2013; (4): 55—60. (In Russ.). https://elibrary.ru/item.asp?id = 21452146

29. Samofalova T. V., Semenov V. N. Deposition of thin layers of zinc sulfide from thiourea complexes and their properties. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2016; 18(2): 248—255. (In Russ.). https://journals.vsu.ru/kcmf/article/view/131

30. Lashkova N.A., Maksimov A.I., Matyushkin L.B., Moshnikov V.A., Ryabko A.A., Somov P.A., Tulenin S.S. Local electrophysical properties of conductive ZnO films. Butlerovskie soobshcheniya. 2015; 42(6): 48—53. (In Russ.). http://foundation.butlerov.com/bh-2015

31. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., Stogney O.V. Nonlinear phenomena in nano- and microheterogenic systems. Moscow: Binom, Laboratoriya znanii; 2012. 352 p. (In Russ.)

32. Sitnikov A.V., Makagonov V.A., Kalinin Yu.E., Kushchev S.B., Foshin V.A. Structure and electrical properties of thin-film composites Con(CoO)100-n. Zhurnal tekhnicheskoi fiziki. 2023; 93(11): 1663—1672. (In Russ.). http://dx.doi.org/10.61011/JTF.2023.11.56499.137-23

33. Kanchana S., Chithra M. J., E. Suhashini, Pushpanathan K. Violet emission from Fe doped ZnO nanoparticles synthesized by precipitation method. Journal of Luminescence. 2016; 76: 6—14. https://doi.org/10.1016/j.jlumin.2015.12.047

34. Pashkevich A.V., Fedotov A.K., Poddenezhny E.N., Bliznyuk L.A., Fedotova J.A., Basov N.A., Kharchanka A.A., Zukowski P., Koltunowicz T.N., Korolik O.V., Fedotova V.V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co. Journal of Alloys and Compounds. 2022; 895(Pt 2): 162621. doi.org/10.1016/j.jallcom.2021.162621


Supplementary files

Review

For citations:


Makagonov V.A., Gabriels K.S., Kalinin Yu.E., Lopatin A.Yu., Bliznyuk L.A., Fedotov A.K. Thermovoltaic response of thin-film bilayered structures based on zinc oxide. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):165-174. (In Russ.) https://doi.org/10.17073/1609-3577j.met202403.575

Views: 170


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)