Электродные материалы на основе углеродных и металлорганических каркасных структур с встроенными химически активными и функциональными элементами (обзор)
https://doi.org/10.17073/1609-3577j.met202405.582
Аннотация
работе представлен обзор различных видов углеродных матриц с высокой удельной поверхностью и технологии заполнения их химически активными и вспомогательными материалами. Основное внимание уделено перспективным матрицам на основе металлорганических каркасов (МОК) и на основе серийно выпускаемых рулонных углеродных материалов типа «Бусофит». Рассмотрены их особенности структуры, представлена классификация. Рассмотрены основные методы и подходы к синтезу как самих МОК, так и композиционных материалов на их основе.
В качестве одного из вариантов изменения свойств МОК и композиционных материалов на их основе представлен подход, основанный на допировании МОК со структурой ZIF-67 другим металлом. В частности, научным коллективом авторов реализован синтез кобальтовых МОК, в которых Co частично замещен марганцем на стадии синтеза. Помимо этого, использована простая методика синтеза путем соосаждения в водном растворе, но модифицированная ультразвуковым воздействием, которое сокращает продолжительность синтеза. Электрохимические исследования показали, что удельная электрохимическая емкость электродов из пиролизованных МОК с частичным замещением кобальта на марганец значительно выше, чем у материалов без марганца. С увеличением содержания марганца в МОК возрастает как удельная емкость, так и плотность энергии. Допирование МОК Mn позволяет значительно (от 100 до 298 Ф/г при плотности тока 0,25 А/г) улучшить электрохимические характеристики материалов электродов для гибридных суперконденсаторов на их основе. Полученные авторами результаты свидетельствуют о том, что замещение кобальта марганцем является эффективным способом повышения электрохимических характеристик МОК.
Ключевые слова
Об авторах
Д. Г. МуратовРоссия
Ленинский просп., д. 29, Москва, 119991;
Ленинский просп., д. 4, стр. 1, Москва, 119049
Муратов Дмитрий Геннадиевич — канд. техн. наук, ведущий научный сотрудник (1), доцент (2)
В. В. Слепцов
Россия
Волоколамское шоссе, д. 4, Москва, 125993
Слепцов Владимир Владимирович — доктор техн. наук, профессор, зав. кафедрой радиоэлектроники, телекоммуникаций и нанотехнологий
Л. В. Кожитов
Россия
Ленинский просп., д. 4, стр. 1, Москва, 119049
Кожитов Лев Васильевич — доктор техн. наук, профессор
И. В. Запороцкова
Россия
Университетский просп., д. 100, Волгоград, 400062
Запороцкова Ирина Владимировна — доктор физ.-мат. наук, профессор, директор института приоритетных технологий
А. В. Попкова
Россия
ул. Железнодорожная, д. 24, Подольск, 142103
Попкова Алёна Васильевна — канд. тех. наук, старший научный сотрудник
А. О. Дителева
Россия
Волоколамское шоссе, д. 4, Москва, 125993
Дителева Анна Олеговна — старший преподаватель, кафедра радиоэлектроники, телекоммуникаций и нанотехнологий
Д. Ю. Кукушкин
Россия
Волоколамское шоссе, д. 4, Москва, 125993
Кукушкин Дмитрий Юрьевич — канд. техн. наук, доцент, кафедра радиоэлектроники, телекоммуникаций и нанотехнологий
Р. А. Цырков
Россия
Волоколамское шоссе, д. 4, Москва, 125993
Цырков Роман Александрович — ассистент, кафедра радиоэлектроники, телекоммуникации и нанотехнологии
А. В. Зорин
Россия
Ленинский просп., д. 4, стр. 1, Москва, 119049
Зорин Артём Викторович — аспирант, кафедра технологий материалов электроники
Список литературы
1. Козадеров О.А. Современные химические источники тока. СПб.: Лань; 2017. 132 с.
2. Choi J.U., Voronina N., Sun Y.-K., Myung S.-T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Advanced Energy Materials. 2020; 10(42): 2002027. https://doi.org/10.1002/aenm.202002027
3. Кицюк Е.П. Исследование и разработка процессовформирования наноструктурированных электродов электрохимических устройств накопления энергии. Дис. канд. техн. наук. Москва; 2017. 166 с.
4. Reitz C., Breitung B., Schneider A., Wang D., Von L.M., Leichtwei T., Janek J., Hahn H., Brezesinski T. Hierarchical carbon with high nitrogen doping level: a versatile anode and cathode host material for long-life lithium-ion and lithium-sulfur batteries. ACS Applied Materials & Interfaces. 2016; 8(16): 10274—10282. https://doi.org/10.1021/acsami.5b12361
5. Zhan F., Wang H., He Q., Xu W., Chen J., Ren X., Wang H., Liu Sh., Han M., Yamauchi Y., Chen L. Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science. 2022; 13(41): 11981—12015. https://doi.org/10.1039/D2SC04012C
6. Itoi H., Matsuura M., Tanabe Y., Kondo Sh., Usami T., Ohzawa Y. High utilization efficiencies of alkylbenzokynones hybridized inside the pores of activated carbon for electrochemical capacitor electrodes. RSC Advances. 2023; 13(4): 2587—2599. https://doi.org/10.1039/D2RA06634C
7. Wang Sh., Yang C., Li X., Jia H., Jia H., Liu Sh., Liu X., Minari T., Sun Q. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. Journal of Materials Chemistry C. 2022; 10(16): 6196—6221. https://doi.org/10.1039/D2TC00193D
8. Ren X., Meng N., Ventura L., Goutianos St., Barbieri E., Zhang H., Yan H., Reece M., Bilotti E. Ultra-high energy density integrated polymer dielectric capacitors. Journal of Materials Chemistry A. 2022; 10(18): 10171—10180. https://doi.org/10.1039/D1TA09045C
9. Yang K., Hu L., Wang Y., Xia J., Sun M., Zhang Y., Goua Ch., Jia Ch. Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A. 2022; 10(23): 12532—12543. https://doi.org/10.1039/D2TA02630A
10. Корнилов Д.Ю. Оксид графена – новый электродный наноматериал для химических источников тока. Дис. д-ра техн. наук. Москва; 2020. 256 с.
11. Громов Д.Г., Галперин В.А., Лебедев Е.А., Кицюк Е.П. Развитие электрохимических накопителей электрической энергии на основе наноструктур. В кн.: Нанотехнологии в электронике. Под ред. Ю.Ф. Чаплыгина. М : Техносфера; 2015. С. 347—373.
12. Shao H., Wu Y.-Ch., Lin Z., Taberna P.-L., Simon P. Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews. 2020; 49(10): 3005—3039. https://doi.org/10.1039/D0CS00059K
13. Velasco A., Kyoung Ryu Yu., Boscá Mojena A., Ladrón-de-Guevara A., Hunt E., Zuo J., Pedrós J., Calle F., Martinez J. Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy & Fuels. 2021; 5(4): 1235—1254. https://doi.org/10.1039/D0SE01849J
14. Elinson V.M., Shchur P. A. Antiadhesion fluorocarbon coatings with induced surface charge for protection against biodegradation. High Temperature Material Processes: An International Quarterly of High-Techno Processes. 2023; 27(4): 33—38. https://doi.org/10.1615/HighTempMatProc.v27.i4.40
15. Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487—1505. https://doi.org/10.1039/b815583f
16. Al-Thabaiti S.A., Mostafa M.M.M., Ahmed A.I., Salama R.S. Synthesis of copper/chromium metal organic frameworks-Derivatives as an advanced electrode material for high-performance supercapacitors. Ceramics International. 2023; 49(3): 5119—5129. https://doi.org/10.1016/j.ceramint.2022.10.029
17. Ryu U.J., Jee S., Rao P.Ch., Shin J., Ko Ch., Yoon M., Park K.S., Choi K.M. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coordination Chemistry Reviews. 2021; 426: 213544. https://doi.org/10.1016/j.ccr.2020.213544
18. Lou W., Wang L., Dong Sh., Zhenzhu cao, Sun J., Zhang Y. A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis. Optical Materials. 2022; 126: 112168. https://doi.org/10.1016/j.optmat.2022.112168
19. Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15—38. https://doi.org/10.1016/j.ccr.2018.04.018
20. Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(19): 8373—8387. https://doi.org/10.1039/D0SC01297A
21. Chhetri K., Adhikari A., Kunwar J., Acharya D., Bhattarai R.M., Mok Y.S., Adhikari A., Yadav A., Kim H.Y. Recent research trends on zeolitic imidazolate framework-8 and zeolitic imidazolate framework-67-based hybrid nanocomposites for supercapacitor application. International Journal of Energy Research. 2023; 2023: 8885207. https://doi.org/10.1155/2023/8885207
22. Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130—2144. https://doi.org/10.1039/C7CS00782E
23. Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783—2828. https://doi.org/10.1039/C8CS00829A
24. Phan A., Doonan Ch.J., Uribe-Romo F., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58—67. https://doi.org/10.1021/ar900116g
25. Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yaghi O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939—943. https://doi.org/10.1126/science.1152516
26. Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2023; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187
27. Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360—5367. https://doi.org/10.1002/adfm.201502253
28. Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220—223. https://doi.org/10.1016/j.matlet.2012.05.077
29. Song G., Shi Y., Jiang Sh., Pang H. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries. Advanced Functional Materials. 2023; 33(42): 2303121. https://doi.org/10.1002/adfm.202303121
30. Ramachandran R., Zhao Ch., Luo D., Wang K., Wang F. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochimica Acta. 2018; 267: 170—180. https://doi.org/10.1016/j.electacta.2018.02.074
31. Zhang H., Wang J., Sun Y., Zhang X., Yang H., Lin B. Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. Journal of Alloys and Compounds. 2021; 879: 160423. https://doi.org/10.1016/j.jallcom.2021.160423
32. Wang C., Li X., Yang W., Xu Y., Pang H. Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chinese Chemical Letters. 2021; 32(9): 2909—2913. https://doi.org/10.1016/j.cclet.2021.04.017
33. Jiao Y., Pei J., Yan Ch., Chen D., Hu Y., Chen G. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. Journal of Materials Chemistry A. 2016; 4(34): 13344—13351. https://doi.org/10.1039/C6TA05384J
34. Yan Y., Gu P., Zheng Sh., Zheng M., Pang H., Xue H. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A. 2016; 4(48): 19078—19085. https://doi.org/10.1039/C6TA08331E
35. Du P., Dong Y., Liu Ch., Wei W., Liu D., Liu P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. Journal of Colloid and Interface Science. 2018; 518: 57—68. https://doi.org/10.1016/j.jcis.2018.02.010
36. Shen W., Guo X., Pang H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF. Molecules. 2022; 27(23): 8226. https://doi.org/10.3390/molecules27238226
37. Xu X., Yang J., Hong Y., Wang J. Nitrate precursor driven high performance Ni/Co-MOF nanosheets for supercapacitors. ACS Applied Nano Materials. 2022; 5(6): 8382—8392. https://doi.org/10.1021/acsanm.2c01488
38. Lu X.F., Xia B.Y., Zang Sh.-Q., Lou X.W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition. 2020; 59(12): 4634—4650. https://doi.org/10.1002/anie.201910309
39. Yang B., Li B., Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research. 2023; 16(1): 1338—1361. https://doi.org/10.1007/s12274-022-4682-y
40. Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040—18048. https://doi.org/10.1007/s10854-017-7747-z
41. Ramachandran R., Xuan W.L., Zhao C.H., Leng X.H., Sun D.Z., Luo D., Wang F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Advances. 2018; 8(7): 3462—3469. https://doi.org/10.1039/C7RA12789H
42. Ibrahim I., Zheng Sh., Foo Ch.Y., Ming H.N., Lim H. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors. Journal of Energy Storage. 2021; 43: 103304. https://doi.org/10.1016/j.est.2021.103304
43. Chen T., Shen T., Wang Y., Yu Z., Zhang W., Zhang Y., Ouyang Z., Cai Q., Yaxiong J., Wang Sh. In situ synthesis of Ni-BTC metal-organic framework@ graphene oxide composites for high-performance supercapacitor electrodes. ACS Omega. 2023; 8(12): 10888—10898. https://doi.org/10.1021/acsomega.2c07187
44. Shao L., Wang , Ma Zh., Ji Zh., Wang X., Song D., Liu Y., Wang N. A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. Journal of Power Sources. 2018; 379: 350—361. https://doi.org/10.1016/j.jpowsour.2018.01.028
45. Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588
46. Hussain I., Iqbal S., Hussain T., Cheung W.L., Khan Sh.Ah., Zhou J., Ahmad M., Khan Sh.A., Lamiel Ch., Imran M., Alfantazi A., Zhang K. Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Materials Today Physics. 2022; 23(2): 100655. https://doi.org/10.1016/j.mtphys.2022.100655
47. Wang L., Jia D., Yue L., Zheng K., Zhang A., Jia Q., Liu J. In situ fabrication of a uniform Co-MOF shell coordinated with CoNiO2 to enhance the energy storage capability of NiCo-LDH via vapor-phase growth. ACS Applied Materials & Interfaces. 2020; 12(42): 47526—47538. https://doi.org/10.1021/acsami.0c12759
48. Shi X., Deng T., Zhu G. Vertically oriented Ni-MOF@ Co (OH)2 flakes towards enhanced hybrid supercapacitior performance. Journal of Colloid and Interface Science. 2021; 593: 214—221. https://doi.org/10.1016/j.jcis.2021.02.096
49. Lu J., Duan H., Zhang Yi., Zhang G., Chen Z., Song Y., Zhu R., Pang H. Directional growth of conductive metal-organic framework nanoarrays along [001] on metal hydroxides for aqueous asymmetric supercapacitors. ACS Applied Materials & Interfaces. 2022; 14(22): 25878—25885. https://doi.org/10.1021/acsami.2c02268
50. Tang X., Li N., Pang H. Metal-organic frameworks-derived metal phosphides for electrochemistry application. Green Energy & Environment. 2022; 7(4): 636—661. https://doi.org/10.1016/j.gee.2021.08.003
51. Zhao J., Liu N., Sun Y., Xu Q., Pan J. Nitrogen-modified spherical porous carbon derived from aluminum-based metal-organic frameworks as activation-free materials for supercapacitors. Journal of Energy Storage. 2023; 73: 109070. https://doi.org/10.1016/j.est.2023.109070
52. Dai Y.Y., Liu C.L., Bai Y., Kong Q.Q., Pang H. Framework materials for supercapacitors. Nanotechnology Reviews. 2022; 11(1): 1005—1046. https://doi.org/10.1515/ntrev-2022-0042
53. Xu S.J., Dong A.R., Hu Y., Yang Z., Huang S.M., Qian J.J. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. Journal of Materials Chemistry A. 2023; 11: 9721—9747. https://doi.org/10.1039/D3TA00239J
54. Cao Z., Momen R., Tao Sh., Xiong D., Song Z., Xiao X., Deng W., Hou H., Yaşar S., Altin S., Bulut F., Zou G., Ji X. Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Letters. 2022; 14(1): 181. https://doi.org/10.1007/s40820-022-00910-9
55. Kim M., Xin R., Earnshaw J., Tang J., Hill J.P., Ashok A., Nanjundan A.K., Kim J., Young Ch., Sugahara Y., Na J., Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols. 2022; 17(12): 2990—3027. https://doi.org/10.1038/s41596-022-00718-2
56. Zhang L.Y., Wang R., Chai W.C., Ma M.Y., Li L.K. Controllable preparation of a N-doped hierarchical porous carbon framework derived from ZIF-8 for highly efficient capacitive deionization. ACS Applied Materials & Interfaces. 2023; 15(41): 48800—48809. https://doi.org/10.1021/acsami.3c10043
57. Marpaung F., Kim M., Khan J.H., Yamauchi Y., Hossain Sh. Metal-organic framework (MOF)-derived nanoporous carbon materials. Chemistry-An Asian Journal. 2019; 14(9): 1331—1343.
58. Salunkhe R.R., Kaneti Y.V., Kim J., Kim J.H., Yamauchi Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts of Chemical Research. 2016; 49(12): 2796—2806. https://doi.org/10.1021/acs.accounts.6b00460
59. Rajak R., Kumar R., Naz Sh., Saraf M., Shaikh M.M. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Transactions. 2020; 49(34): 11792—11818. https://doi.org/10.1039/D0DT01676D
60. Kumar N., Wani T.A., Pathak P.K., Bera A., Salunkhe R.R. Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustainable Energy & Fuels. 2022; 6(7): 1762—1769. https://doi.org/10.1039/D2SE00092J
61. Li Q., Dai Zh., Wu J., Liu W., Di T., Jiang R., Zheng X., Wang W., Ji X., Li P., Xu Zh., Qu X., Xu Zh., Zhou J. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Advanced Energy Materials. 2020; 10(33): 1903750. https://doi.org/10.1002/aenm.201903750
62. Huang J., Hao F., Xiaohua Zh., Chen J. N-doped porous carbon sheets derived from ZIF-8: preparation and their electrochemical capacitive properties. Journal of Electroanalytical Chemistry. 2018; 810: 86—94. https://doi.org/10.1016/j.jelechem.2017.12.078
63. Gu Y., Miao L., Yin Y., Liu M., Gan L., Li L. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters. 2021; 32(4): 1491—1496. https://doi.org/10.1016/j.cclet.2020.09.029
64. Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138
65. Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/C4CS00094C
66. Hu C., Xu J., Lu Zh.-f., Cao Ch., Wang Y. Core-shell structured ZIF-7@ ZIF-67 with high electrochemical performance for all-solid-state asymmetric supercapacitor. International Journal of Hydrogen Energy. 2021; 46(63): 32149—32160. https://doi.org/10.1016/j.ijhydene.2021.06.225
67. Ma J., Li J., Guo R., Xu H., Shi F., Dang L., Liu Z., Sun J., Lei Zh. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources. 2019; 428: 124—130. https://doi.org/10.1016/j.jpowsour.2019.04.101
68. Guan C., Zhao W., Hu Y., Lai Zh., Li X., Sun Sh., Zhang H., Cheetham T., Wang J. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons. 2017; 2(2): 99—105. https://doi.org/10.1039/C6NH00224B
69. Kozhitov L.V. Kostiaeva A.V., Kozlov V., Bulatov M.F. Formation of FeNi3/C nanocomposite from Fe and Ni salts and polyacrylonitrile under IR-heating. Journal of Nanoelectronics and Optoelectronics. 2012; 7(4): 419—422. https://doi.org/10.1166/jno.2012.1322
70. Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasilev A., Tarala V., Korovin E. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596
71. Lee H.C., Kim Y.A., Kim B.-H. Electrochemical activity of triple-layered boron-containing carbon nanofibers with hollow channels in supercapacitors. Carbon. 2022; 196: 78—84. https://doi.org/10.1016/j.carbon.2022.04.061
72. Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A., Popkova A.V., Tarala V., Korovin E. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105
73. Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E., Popkova A.V., Novotortsev V. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(1): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5
74. Chang C., Li M., Wang H., Wang Sh., Liu X., Liu H.-K., Li L. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A. 2019; 7(34): 19939—19949. https://doi.org/10.1039/C9TA06210F
75. Yue Z., Dunya H., Ashuri M., Kucuk K., Aryal Sh., Antonov St., Alabbad B., Segre C.U., Mandal B. Synthesis of a very high specific surface area active carbon and its electrical double-layer capacitor properties in organic electrolytes. ChemEngineering. 2020; 4(3): 43. https://doi.org/10.3390/chemengineering4030043
76. Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin E.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15—24. https://doi.org/10.3897/j.moem.9.1.104721
77. Das S.K., Bhunia K., Mallick A., Pradhan A., Pradhan D., Bhaumik A. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous and Mesoporous Materials. 2018; 266: 109—116. https://doi.org/10.1016/j.micromeso.2018.02.026
78. Roy A., Mondal S., Halder A., Banerjee A., Ghoshal D., Paul A., Malik S. Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application. European Polymer Journal. 2017; 93: 448—457. https://doi.org/10.1016/j.eurpolymj.2017.06.028
79. Das S.K., Pradhan L., Jena B.K., Basu S. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon. 2023; 201: 49—59. https://doi.org/10.1016/j.carbon.2022.09.004
80. Khan I.A., Badshah A., Khan S.I., Zhao D., Nadeem M. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials. 2017; 253: 169—176. https://doi.org/10.1016/j.micromeso.2017.06.049
81. Zhao Y., Zhao Zh., Wei M., Jiang X., Li H., Gao J., Linxi H. Preparation of Si-doped and cross linked carbon nanofibers via electrospinning and their supercapacitive properties. Progress in Natural Science: Materials International. 2018; 28(3): 337—344. https://doi.org/10.1016/j.pnsc.2018.04.013
82. Bhosale R., Bhosale Sn., Kumbhar Pr.D., Narale D.K., Ghaware R., Jambhale Ch.L., Kolekar S. Design and development of a porous nanorod-based nickel-metal-organic framework (Ni-MOF) for high-performance supercapacitor application. New Journal of Chemistry. 2023; 47(14): 6749—6758. https://doi.org/10.1039/D3NJ00456B
83. Xue B., Li K., Guo Y., Lu J., Gu Sh., Zhang L. Construction of zeolitic imidazolate frameworks-derived NixCo3-xO4/reduced graphene oxides/Ni foam for enhanced energy storage performance. Journal of Colloid and Interface Science. 2019; 557(6): 112—123. https://doi.org/10.1016/j.jcis.2019.09.005
84. Iqbal R., Sultan M.Q., Hussain S., Hamza M., Tariq A., Akbar M.B., Ma Y., Zhi L. The different roles of cobalt and manganese in metal-organic frameworks for supercapacitors. Advanced Materials Technologies. 2021; 6(3): 2000941. https://doi.org/10.1002/admt.202000941
85. Uke S.J., Akhare V.P., Bambole D.R., Bodade A.B., Chaudhari G.N. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: a review. Frontiers in Materials. 2017; 4: 21. https://doi.org/10.3389/fmats.2017.00021
86. Слепцов В.В., Гоффман В.Г., Дителева А.О., Ревенок Т.В., Дителева Е.О. Физическая модель электродного материала для гибридных конденсаторов. Физикохимия поверхности и защита материалов. 2023; 59(2): 149—154. https://doi.org/10.31857/S0044185623700171
87. Гоффман В.Г., Слепцов В.В., Гороховский А.В., Горшков Н.В., Ковынева Н.Н., Севрюгин А.В., Викулова М.А., Байняшев А.М., Макарова А.Д., Зо Лвин Ч. Накопители энергии с бусофитовыми электродами, модифицированными титаном. Электрохимическая энергетика. 2020; 20(1): 20—32. https://doi.org/10.18500/1608-4039-2020-20-1-20-32
88. Sleptsov V.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Diteleva E.O. Vacuum as a continuum medium forming energy inhomogeneities with a high energy density in the liquid phase. Modern Electronic Materials. 2022; 8(2): 73—78. https://doi.org/10.3897/j.moem.8.2.97508
89. Пат. (РФ) № 2756189 C1. Дителева А.О., Кукушкин Д.Ю., Савкин А.В., Слепцов В.В. Установка для электроимпульсного управляемого получения наночастиц токопроводящих материалов. Заявл.: 19.12.2019; опубл.: 28.09.2021.
90. Diteleva A., Sleptsov V., Savilkin S., Matsykin S., Granko A. Hybrid capacitor based on carbon matrix for intelligent electric energy storage and transportation system. Journal of Physics Conference Series. 2021; 1925(1): 012083. https://doi.org/10.1088/1742-6596/1925/1/012083
91. Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О., Цырков Р.А. Тонкопленочные технологии в создании электродных материалов для перспективных источников тока. Вестник машиностроения. 2021; (9): 63—66. https://doi.org/10.36652/0042-4633-2021-9-63-66
92. Пат. (РФ) № 191063 U1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Химический источник тока с тонкопленочным токосборником. Заявл.: 06.03.2019; опубл. 23.07.2019.
93. Пат. (РФ) № 2696479 C1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Способ изготовления электродов химического источника тока. Заявл.: 08.10.2018; опубл.: 02.08.2019.
94. Пат. (РФ) № 209747 U1. Кукушкин Д.Ю., Цырков Р.А., Слепцов В.В., Дителева А.О., Осипов В.В., Савилкин С.Б. Устройство для модификации поверхности материалов наночастицами металлов. Заявл.: 15.12.2021; опубл.: 22.03.2022.
Рецензия
Для цитирования:
Муратов Д.Г., Слепцов В.В., Кожитов Л.В., Запороцкова И.В., Попкова А.В., Дителева А.О., Кукушкин Д.Ю., Цырков Р.А., Зорин А.В. Электродные материалы на основе углеродных и металлорганических каркасных структур с встроенными химически активными и функциональными элементами (обзор). Известия высших учебных заведений. Материалы электронной техники. 2024;27(3):199-222. https://doi.org/10.17073/1609-3577j.met202405.582
For citation:
Muratov D.G., Sleptsov V.V., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Zorin A.V. Electrode materials based on carbon and metal-organic framework structures with built-in chemically active and functional elements. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):199-222. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.582