Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Effect of Co–CoO nanoparticles on the concentration of charge carriers in a hybrid structure based on single-layer CVD graphene

https://doi.org/10.17073/1609-3577j.met202405.585

Abstract

The effect of deposited aggregates of Co–CoO nanoparticles with an average diameter of 160 nm on the charge carrier concentration and carrier transport mechanisms in Co–CoO/graphene/SiO2 hybrid structures has been studied. The structures were obtained by electrochemical deposition of cobalt nanoparticles onto the surface of single-layer CVD graphene in a reverse galvanostatic mode from an electrolyte containing CoSO4∙6H2O (1.25 g/l) and NaCl (0.064 g/l) mixture at a cathodic current density of 2.5 mA/cm2 and an anodic current density 1.25 mA/cm2. It has been shown that deposition of Co–CoO nanoparticles results in an almost twofold decrease in conductivity of structure. We attribute this effect to the exclusion of some of the intrinsic defects of graphene from the carrier transport process in the structure under study.
The coexistence of mechanisms of quantum corrections (QC) to the Drude conductivity under conditions of weak localization and usual band (activational) conductivity was discovered. The dominance of the QC to conductivity both before and after the Co–CoO particles deposition, as well as a decrease in the value of the pre-exponential factor σa0, included in the activational mechanism, from 2.8∙10-4 S to 3.1∙10-5 S were observed after particle deposition.

About the Authors

A. A. Kharchanko
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Andrei A. Kharchanko — Cand. Sci. (Phys.-Math.), Associate Professor, Leading Researcher, Laboratory of Advanced Materials Physics



A. K. Fedotov
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Alexander K. Fedotov — Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Laboratory of Advanced Materials Physics



S. A. Vorobyova
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk 220006

Svetlana A. Vorobyova — Cand. Sci. (Chem.), Leading Researcher, Laboratory for Chemistry of Condensed Systems



A. O. Konakov
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk 220006

Artem O. Konakov — Cand. Sci. (Chem.), Leading Researcher, Laboratory for Chemistry of Condensed Systems



M. D. Malinkovich
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Mikhail D. Malinkovich — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science of Semiconductors and Dielectrics



M. V. Chichkov
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Maxim V Chichkov — Postgraduate Student, Department of Materials Science of Semiconductors and Dielectrics



N. A. Kazimirov
http://www.inp.bsu.by/institut/catalog/63876/kazimirov
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Nikita A. Kazimirov — Researcher



J. A. Fedotova
Research Institute for Nuclear Problems of Belarusian State University
Belarus

11 Bobruiskaya Str., Minsk 220006

Julia A. Fedotova — Dr. Sci. (Phys.-Math.), Professor, Deputy Director



O. A. Ivashkevich
Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

14 Leningradskaya Str., Minsk 220006

Oleg A. Ivashkevich — Academician of the NASB, Dr. Sci. (Chem.), Leading Researcher, Laboratory for Chemistry of Condensed Systems



References

1. Wehrfritz P., Seyller T. The Hall coefficient: a tool for characterizing graphene field effect transistors. 2D Materials. 2014; 1(3): 035004. https://doi.org/10.1088/2053-1583/1/3/035004

2. Brus V.V., Lang F., Fengler St., Dittrich Th., Rappich J., Nickel N.H. Doping effects and charge-transfer dynamics at hybrid perovskite/graphene interfaces. Advanced Materials Interfaces. 2018; 5(20): 1800826. https://doi.org/10.1002/admi.201800826

3. Moon J.S., Curtis D., Ddd D., Wong D., McGuire C., Campbell P.M., Jernigan G., Tedesco J.L., VanMil B.L., Myers R.L., Eddy C.Jr., Gaskill D.K. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Letters. 2009; 30(6): 650—652. https://doi.org/10.1109/LED.2009.2020699

4. Lin Y.-M., Dimitrakopoulos Ch., Jenkins K.A., Farmer D.B., Chiu Hs.-Y., Grill A., Avouris Ph. 100-GHz transistors from wafer-scale epitaxial grapheme. Science. 2010; 327(5966): 662—662. https://doi.org/10.1126/science.1184289

5. Guo Z., Dong R., Chakraborty P.S., Lourenco N., Palmer J., Hu Y., Ruan M., Hankinson J., Kunc J., Cressler J.D., Berger Cl., de Heer W.A. Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Letters. 2013; 13(3): 942—947. https://doi.org/10.1021/nl303587r

6. Yang X., Zhang X., Ma Y., Huang Y., Wang Y., Chen Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry. 2009; 19(18): 2710—2714. https://doi.org/10.1039/B821416F

7. Wang D., Kou R., Choi D., Yang Zh., Nie Z., Li J., Saraf L., Hu D., Zhang J.T., Graff G.L., Liu W.J., Pope M.A.,. Aksay I.A Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano. 2010; 4(3): 1587—1595. https://doi.org/10.1021/nn901819n

8. Li F., Song J., Yang H., Gan Sh., Zhang Q., Han D., Ivaska A., Niu L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nano-technology. 2009; 20(45): 455602. http://doi.org/10.1088/0957-4484/20/45/455602

9. Watcharotone S., Dikin D.A., Stankovich S., Piner R., Jung I., Dommett G.H.B., Evmenenko G., Wu Sh.-E., Chen Sh.-F., Liu Ch.-P., Nguyen S., Ruoff R. Graphene-silica composite thin films as transparent conductors. Nano Letters. 2007; 7(7): 1888—1892. https://doi.org/10.1021/nl070477

10. Rengaraj A., Haldorai Y., Cheol B., Kwak H., Ahn S., Jeon K.-J., Park S.H., Han Y.-K., Huh Y.S. Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor. Journal of Materials Chemistry B. 2015; 3(30): 6301—6309. https://doi.org/10.1039/C5TB00908A

11. Zhang C., Lee B.-J., Li H., Samdani J.Sh., Kang T.-H., Yu J.-S. Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications. Communications Chemistry. 2018; 1(1): 94. https://doi.org/10.1038/s42004-018-0088-x

12. Qin X., Ola O., Zhao J., Yang Z., Tiwari S.K., Wang N., Zhu Y. Recent progress in graphene-based electrocatalysts for hydrogen evolution reaction. Nanomaterials. 2022; 12(11): 1806. https://doi.org/10.3390/nano12111806

13. Yang M., Liu Y., Fan T., Zhang D. Metal-graphene interfaces in epitaxial and bulk systems: A review. Progress in Materials Science. 2020; 110: 100652. https://doi.org/10.1016/j.pmatsci.2020.100652

14. Rajyalakshmi T., Pasha A., Khasim S., Lakshmi M., Imran M. Synthesis, characterization and Hall-effect studies of highly conductive polyaniline/graphene nanocomposites. SN Applied Sciences. 2020; 2(4): 1—11. https://doi.org/10.1007/s42452-020-2349-4

15. Asshoff P.U., Sambricio J.L., Rooney A., Slizovskiy S., Mishchenko A., Rakowski A.M., Hill E., Geim A.K., Haigh S.J., Fal’ko V.I., Vera-Marun I.J., Grigorieva I.V. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in grapheme. 2D Materials. 2017; 4(3): 031004. https://doi.org/10.1088/2053-1583/aa7452

16. Franco V.C.D., Castro G.M.B., González J.T.C., Mendes D., Schmidt J.E. In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si. Carbon Letters. 2017; 21(1): 16—22. https://doi.org/10.5714/CL.2017.21.016

17. Zhidkov I.S., Skorikov N., Korolev A., Kukharenko A.I., Kurmaev E., Fedorov V.E., Cholakh S.O. Electronic structure and magnetic properties of graphene/Co composite. Carbon. 2015; 91: 298—303. https://doi.org/10.1016/j.carbon.2015.04.086

18. Bayev V.G., Fedotova J., Kasiuk J., Vorobyova S., Sohor A., Komissarov I., Kovalchuk N., Prischepa S.L., Kargin N.I., Andrulevičius M., Przewoznik J., Kapusta Cz., Ivashkevich O.A., Tyutyunnikov S.I., Kolobylina N., Guryeva P.V. CVD graphene sheets electrochemically deco-rated with «core-shell» Co/CoO nanoparticles. Applied Surface Science. 2018; 440; 1252—1260. https://doi.org/10.1016/j.apsusc.2018.01.245

19. Fedotov A.K., Prischepa S.L., Fedotov A.S., Gumiennik V.E., Komissarov I.V., Konakov A.O., Vorobyova S.A., Ivashkevich O.A., Kharchenko A.A. Influence of deposition of cobalt particles on quantum corrections to Droude conductivity in twisted CVD graphene. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(2): 73—83. (In Russ.). https://doi.org/10.17073/1609-3577-2019-2-73-83

20. So H.M., Mun J.-H., Bang G.-S., Kim T.-Y., Cho B.-J., Ahn Ch.W. Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles. Carbon Letters. 2012; 13(1): 56—59. http://doi.org/10.5714/CL.2012.13.1.056

21. Fedotova Yu.A., Kharchenko A.A., Fedotov A.K., Chichkov M.V., Malinkovich M.D., Konakov A.O., Vorobyova S.A., Kasyuk Yu.V., Gumennik V. .E., Kula-Maximenko M., Mitura-Nowak M., Maksimenko A., Przewoznik J., Kapusta Cz. Influence of magnetic Co-CoO particles on electrical transport properties in single-layer grapheme. Physics of the Solid State. 2020; 62(2): 316—325. (In Russ.). https://doi.org/10.1134/S1063783420020134

22. Fedotova Yu.A., Kharchenko A.A., Fedotov A.K., Chichkov M.V., Malinkovich V.D., Konakov A.O., Vorobyeva S.A. Magnetotransport properties of single-layer CVD graphene with Co–CoO nanoparticles in a transverse electric field. In: Fullerenes and nanostructures in condensed matter. Minsk: Institut teplo- i massoobmena im. A. V. Lykova NAN Belarusi; 2023. P. 342—348. (In Russ.)

23. Polyanskaya T.A., Shmartsev Yu.V. Quantum corrections to conductivity in semiconductors with two-dimensional and three-dimensional electron gas. Experiment. Physics of the Solid State. 1989; 23(1): 3—32. (In Russ.)

24. Kharchenko A.A., Fedotova J.A., Slabukho V.Yu., Fedotov A.K., Pashkevich A.V., Svito I.A., Bushinsky M.V. Electrical and galvanomagnetic properties of black phosphorus single crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022; 25(1): 5—22. (In Russ.). https://doi.org/10.17073/1609-3577-2022-1-5-22

25. Pippard A.B. Magnetoresistance in metals. UK: Cambridge University Press; 1989. Vol. 2. 253 p.


Supplementary files

Review

For citations:


Kharchanko A.A., Fedotov A.K., Vorobyova S.A., Konakov A.O., Malinkovich M.D., Chichkov M.V., Kazimirov N.A., Fedotova J.A., Ivashkevich O.A. Effect of Co–CoO nanoparticles on the concentration of charge carriers in a hybrid structure based on single-layer CVD graphene. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):254-261. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.585

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)