Synthesis, crystal structure and ferroelectric properties of Ba2NdFeNb4O15/Si(001) films
https://doi.org/10.17073/1609-3577j.met202406.593
Abstract
Using the method of HF cathode sputtering in an oxygen atmosphere, Ba2NdFeNb4O15/Si(001) heterostructures with layer thicknesses from 75 to 1000 nm were manufactured. Their crystal structure, surface morphology, dielectric characteristics and features of the formation of the ferroelectric state were investigated. It has been established that the films are polycrystalline textured with a predominant orientation of the axes [001] in the direction normal to the substrate surface, in which a significant deformation of the unit cell was observed. It was found that as the thickness of the films increases, the roughness of their surface increases and follows the scaling law. From the volt-farad characteristics (in terms of displacement and hysteresis width), it was found that with a decrease in thickness, the coercive field increases and the internal field increases. This was also confirmed by measuring local residual hysteresis loops using piezoelectric force microscopy. In addition, by the local application of positive and negative external fields, it is possible to form polarized regions in which, in one case, the polarization vector is directed from the substrate to the surface of the film, and in the other, on the contrary, from the film to the substrate. Also, the effective piezoelectric coefficient was determined for all the studied heterostructures. The reasons for the revealed patterns are discussed.
Keywords
About the Authors
A. V. PavlenkoRussian Federation
41 Chekhov Ave., Rostov-on-Don 344006
Anatoly V. Pavlenko — Dr. Sci. (Phys.-Math.), Leading Researcher
D. V. Stryukov
Russian Federation
41 Chekhov Ave., Rostov-on-Don 344006
Daniil V. Stryukov — Cand. Sci. (Phys.-Math.), Senior Researcher
S. S. Staruknina
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Sofia S. Staruknina — Laboratory Assistant Researcher, Laboratory of Physics of Oxide Ferroelectrics
T. S. Ilina
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Tatiana S. Ilina — Cand. Sci. (Phys.-Math.), Junior Researcher, Laboratory of Physics of Oxide Ferroelectrics
D. A. Kiselev
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Dmitry A. Kiselev — Ph.D, Cand. Sci. (Phys.-Math.), Head of the Laboratory of Physics of Oxide Ferroelectrics
References
1. Наноразмерные пленки ниобата бария-стронция: особенности получения в плазме высокочастотного разряда, структура и физические свойства / А.В. Павленко, С.П. Зинченко, Д.В. Стрюков, А.П. Ковтун; Южный научный центр РАН. – Ростов - на - Дону: Изд - во ЮНЦ РАН, 2022. – 232 с. – ISBN 978-5-4358-0231-3.
2. Josse M, Bidault O, Roulland F, Castel E, Simon A, Michau D, Von der Muhll R, Nguyen O, Maglione M (2009) The Ba2LnFeNb4O15 ‘‘tetragonal tungsten bronze’’: Towards RT composite multiferroics. Solid State Sciences 11: 1118–1123. https://doi.org/10.1016/j.solidstatesciences.2009.02.015
3. Hajlaoui T, Chabanier C, Harnagea C, Pignolet A (2017) Epitaxial Ba2NdFeNb4O15-based multiferroic nanocomposite thin films with tetragonal tungsten bronze structure. Scripta Materialia 136: 1–5. https://doi.org/10.1016/j.scriptamat.2017.04.005
4. Kinka M, Gabrielaitis D, Albino M, Josse M, Palaimiene E, Grigalaitis R, Maglione M, Banys J (2015) Investigation of Dielectric Relaxation Processes in Ba2NdFeNb4-xTaxO15 Ceramics. Ferroelectrics 485(1): 101–109. https://doi.org/10.1080/00150193.2015.1061348
5. Fernandez A, Acharya M, Lee HG, Schimpf J, Jiang Y, Lou D, Tian Z, Martin LW (2022) Thin-Film Ferroelectrics. Advanced Materials 34 (30): 2108841. https://doi.org/10.1002/adma.202108841
6. T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, S. Fichtner, P. D. Lomenzo, M. Hoffmann, U. Schroeder (2021) Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129: 100901. https://doi.org/10.1063/5.0037617
7. Мухортов В.М., Юзюк Ю.И. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. Ростов н/Д.: ЮНЦ РАН, 2008. – 224 с
8. Pavlenko AV, Stryukov DV (2022) Dielectric properties of Ba2NdFeNb4O15 at temperatures between 10 K and 320 K. Ferroelectrics 590(1): 220-226. https://doi.org/10.1080/00150193.2022.2037974
9. Munoz RC, Vidal G, Mulsow M, Lisoni JG, Arenas C, Concha A, Mora F, Espejo R, Kremer G, Moraga L, Esparza R, Haberle P (2000) Surface roughness and surface-induced resistivity of gold films on mica: Application of quantitative scanning tunneling microscopy. Phys. Rev. B 62: 4686. https://doi.org/10.1103/PhysRevB.62.4686
10. Borrás A, Yanguas-Gil A, Barranco A, Cotrino J, González-Elipe AR (2007) Relationship between scaling behavior and porosity of plasma-deposited TiO2 thin films. Phys. Rev. B 76: 235303. https://doi.org/10.1103/PhysRevB.76.235303
11. Gannepalli A, Yablon DG, Tsou AH Proksch R (2011) Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22: 355705. http://dx.doi.org/10.1088/0957-4484/22/35/355705
12. Guo EJ, Roth R, Herklotz A, Hesse D, Dörr K (2015) Ferroelectric 180° Domain Wall Motion Controlled by Biaxial Strain. Advanced Materials 27 (9): 1615-1618. https://doi.org/10.1002/adma.201405205
13. Kay HF, Dunn JW (1962) Thickness dependence of the nucleation field of triglycine sulphate. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 7 (84): 2027-2034. https://doi.org/10.1080/14786436208214471
14. Jo JY, Kim YS, Noh TW, Yoon JG, Song TK (2006) Coercive fields in ultrathin BaTiO3 capacitors. Appl. Phys. Lett. 89: 232909. https://doi.org/10.1063/1.2402238
15. Nishino R, Fujita TC, Kagawa F, Kawasaki M (2020) Evolution of ferroelectricity in ultrathin PbTiO3 films as revealed by electric double layer gating. Sci. Rep. 10: 10864 https://doi.org/10.1038/s41598-020-67580-8
16. Signore MA, Francioso L, De Pascali C, Serra A, Manno D, Rescio G, Quaranta F, Melissano E, Velardi L (2023) Improvement of the piezoelectric response of AlN thin films through the evaluation of the contact surface potential by piezoresponse force microscopy. Vacuum 218: 112569. https://doi.org/10.1016/j.vacuum.2023.112596
17. Zhang Z, Li X, Peng Z, Yan X, Liu S, Hong Y, Shan Y, Xu X Jin, L, Liu B, Zhang X, Chai Y, Zhang S, Jen AKY, Yang Z (2023) Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling. Nat Commun 14: 4094. https://doi.org/10.1038/s41467-023-39692-y
Supplementary files
Review
For citations:
Pavlenko A.V., Stryukov D.V., Staruknina S.S., Ilina T.S., Kiselev D.A. Synthesis, crystal structure and ferroelectric properties of Ba2NdFeNb4O15/Si(001) films. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):223-231. (In Russ.) https://doi.org/10.17073/1609-3577j.met202406.593