Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Formation of a mixed source of epithelial neutrons and a scanning proton beam at Prometheus CРT for the treatment of tumors in flash therapy mode

https://doi.org/10.17073/1609-3577j.met202406.596

Abstract

On a medical accelerator “Prometheus“ at an energy of 200 MeV, a mixed secondary beam of delayed neutrons and a scanning high-intensity pencil beam of protons were designed to irradiate the tumor in flash therapy mode with a dose of 50–70 Gray. A neutron-forming target was used to produce fast neutrons and then delayed neutrons. The special design of the neutron-producing target allowed for several pulses of the accelerator to irradiate the outer surface of the tumor with scanning spots of protons and simultaneously irradiate the entire tumor area with delayed neutrons. Using the developed new composites for neutron protection, a mixed beam channel was constructed: delayed neutrons and scanning proton spots. The power profiles of the equivalent dose at the outlet of the channel for the neutron component of the channel were measured using an ionization pad chamber on a “warm liquid”. The pencil proton beam, scanning the entire outer surface of the tumor and sequentially changing the scanning depth, should destroy the superficial blood vessels on the outer surface of the tumor. The average radiation dose per session should be 50–70 Gray. A neutron beam simultaneously with protons during a flash therapy session irradiates the entire tumor area and has a combined value, working in the mode of the neutron capture dose-forming component of this treatment method, in the presence of the introduction of the desired sensitizer. It is proposed to enhance the effect of a proton beam scanning the tumor surface, due to additional dose generation from radio sensitizers based on nano-gold particles.

About the Authors

V. V. Siksin
Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation

53 Leninsky Ave., Moscow 119991

Viktor V. Siksin — Cand. Sci. (Phys.-Math.), Senior Researcher



I. Yu. Shchegolev
Avangard JSC
Russian Federation

78 Oktyabrskaya Str., Safonovo, Smolensk Region 215500

Igor Yu. Shchegolev — Head of the TSL Product Quality Research Sector



References

1. Pat. (RU) No. 2808930 IPC A61N5/10 G21C5/02 G21K1/02. Siksin V.V., Ryabov V.A., Zavestovskaya I.N. Device for forming a neutron beam at the proton accelerator of the Prometheus complex. Appl.: 05.12.2023; publ. 05.12.2023. Avaliable at: https://patenton.ru/patent/RU2808930C1

2. Butterworth K.T., McMahon S.J., Currell F.J., Prise K.M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012; 4(16): 4830. https://doi.org/10.1039/c2nr31227a

3. Hubbell J.H., Seltzer S.M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Bureau of Standards; 1995. 111 p. https://doi.org/10.6028/NIST.IR.5632

4. Cui L., Her S., Borst G.R., Bristow R.G., Jaffray D.A., Allen Ch. Radiosensitization by gold nanoparticles: will they ever makeit to the clinic? Radiotherapy and Oncology. 2017; 124(3): 344—356. https://doi.org/10.1016/j.radonc.2017.07.007

5. Gerosa C., Crisponi G., Nurchi V.M., Saba L., Cappai R., Cau F., Faa G., Van Eyken P., Scartozzi M., Floris G., Fanni D. Gold nanoparticles: a new golden era in oncology? Pharmaceuticals (Basel). 2020; 13(8): 192. https://doi.org/10.3390/ph13080192

6. Jain S., Hirst D.G., O’Sullivan J.M. Gold nanoparticles as novel agents for cancer therapy. The British Journal of Radiology. 2012; 85(1010): 101—103. https://doi.org/10.1259/bjr/59448833

7. Chen Y., Yang J., Fu S., Wu J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. International Journal of Nanomedicine. 2020; 15: 9407—9430. https://doi.org/10.2147/IJN.S272902

8. Torrisi L. Physical aspects of gold nanoparticles as cancer killer therapy. Indian Journal of Physics. 2021; 95: 225—234. https://doi.org/10.1007/s12648-019-01679-1

9. Penninckx S., Heuskin A.C., Michiels C., Lucas S. Gold nanoparticles as a potent radiosensitizer: а transdisciplinary approach from physics to patient. Cancers. 2020; 12(8): 1—36. https://doi.org/10.3390/cancers12082021

10. Kuncic Z., Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Physics in Medicine and Biology. 2018;63(2):02tr1. https://doi.org/10.1088/1361-6560/aa99ce

11. Verkhovtsev A., Korol A.V., Solov’yov A.V. Irradiation-induced processes with atomic clusters and nanoparticles. In: Solov’yov A.V. (ed.). Nanoscale insights into ion-beam cancer therapy. Cham: Springer International Publishing; 2017. P. 237—276.

12. Peukert D., Kempson I., Douglass M., Bezak E. Metallic nanoparticle radiosensitisation of ion radiotherapy: a review. Physica Medica. 2018; 47: 121—128. https://doi.org/10.1016/j.ejmp.2018.03.004

13. Bushmanov Y., Sheino I.N., Lipengolts A.A., Solovyov A.N., Koryakin S.N. Prospects of proton therapy combined technologies in the treatment of cancer. Medical Radiology and Radiation Safety. 2019; 64(3): 11—18. (In Russ.). https://doi.org/10.12737/article_5cf237bf846b67.57514871

14. Walzlein C., Scifoni E., Kramer M., Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Physics in Medicine and Biology. 2014; 59(6): 1441—1458. https://doi.org/10.1088/0031- 9155/59/6/1441

15. Pat. (RU) No 2695273 IPC A61N 5/10. Balakin V.E.,Balakin P.V. Proton therapy method in treating oncological diseases. Appl.: 13.06.2018; publ. 22.07.2019. Avaliable at: https://yandex.ru/patents/doc/RU2695273C1_20190722

16. Malutin E.V., Siksin V.V., Shemyakov A.E., Sgegolev I.Ju. Protective properties of the РОV-40 material under conditions of irradiation with secondary neutrons and gamma rays. Meditsinskaya fizika = Medical Physics. 2019; (4(84)): 75–79. (In Russ.)

17. Pat. (RU) No 2712044 IPC C08G 18/58, C08G 59/14, B32B 27/38. Shchegolev I.Yu., Yemelyanov V.M. Epoxy-urethane binder with increased fire-resistance, heat and thermo-resistance. Appl.: 22.08.2019; publ. 24.01.2020. Avaliable at: https://yandex.ru/patents/doc/RU2712044C1_20200124

18. Bormotov A.N., Proshin A.P., Bazhenov Yu.M., Danilov A.M., Sokolova Yu.A., Polymer composite materials for radiation protection. Moscow: Paleotip; 2006. 272 p.

19. Milinchuk V.K. Radiation chemistry. Sorosovskii Obrazovatel'nyi Zhurnal = Soros Educational Journal. 2000; 6(4): 24—29. (In Russ.)

20. Siksin V.V. Pilot installation for the purificationof the “warm liquid” of tetramethylsilane and conducting “non-accelerating experiments”. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(2): 118—127. (In Russ.). https://doi.org/10.17073/1609-3577-2019-2-118-127


Review

For citations:


Siksin V.V., Shchegolev I.Yu. Formation of a mixed source of epithelial neutrons and a scanning proton beam at Prometheus CРT for the treatment of tumors in flash therapy mode. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):358-368. (In Russ.) https://doi.org/10.17073/1609-3577j.met202406.596

Views: 147


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)