Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Energy, demand for computing power and the green world

https://doi.org/10.17073/1609-3577j.met202406.597

Abstract

The review considers the main trends in global energy production and consumption over the last half century, based on the analysis made by P.L. Kapitza in 1975 based on a unified approach using the Umov–Poynting vector. Such aspects of the problem as the impact of energy consumption on gross national product per capita, reasons for different approaches of countries to the transition to renewable energy sources, existing sources of energy, global distribution of its production and consumption, features and prospects of different energy technologies, as well as technologies to reduce energy consumption are touched upon. Thus, since 1975, the price of one kilowatt-hour of "solar" electricity has fallen by orders of magnitude and this technology has moved to the forefront, while fusion still remains the "energy of the future" and coal continues to hold its position in the market. Somewhat unexpectedly, electronics and telecommunications have become a major consumer of energy, urging a shift from von Neumann architecture to neuromorphic technology in computers and the development of femto and attowatt optoelectronics. And a totally unforeseen energy consumer has been cryptocurrency mining. On the other hand, the harvesting of dissipated energy in a variety of ways is seen as an environmentally friendly alternative to the use of batteries in low and ultra-low-power devices.

About the Author

N. A. Sobolev
Universidade de Aveiro
Portugal

3810-193 Aveiro

Nikolai A. Sobolev — PhD, Professor Jubilado, Departamento de Física and i3N



References

1. Kapitza P.L. Energy and physics. Physics–Uspekhi. 1976; 19(2): 169–173. https://doi.org/10.1070/PU1976v019n02ABEH005135

2. What is renewable energy? https://www.un.org/en/climatechange/what-is-renewable-energy (accessed on 10.04.2024).

3. Palazzo Corner S., Siegert M., Ceppi P., Fox-Kemper B., Frölicher T.L., Gallego-Sala A., Haigh J., Hegerl G.C., Jones C.D., Knutti R., Koven Ch.D., MacDougall A.H., Meinshausen M., Nicholls Z., Sallée J.B., Sanderson B.M., Séférian R., Turetsky M., Williams R.G., Zaehle S., Rogelj J. The zero emissions commitment and climate stabilization. Frontiers in Science. 2023; 1: 1170744. https://doi.org/10.3389/fsci.2023.1170744

4. Fuel Properties Comparison. Alternative Fuels Data Center. https://afdc.energy.gov/fuels/properties (accessed on 10.04.2024).

5. Electric car battery weight explained. https://blog.evbox.com/ev-battery-weight (accessed on 10.04.2024).

6. Morante J.R. The role of materials research in the deployment of hydrogen. Inside E-MRS World. 2022; 1(2). https://www.dropbox.com/s/5299cuybpk6odct/Inside%20E-MRS%20World_V1N2_September2022.pdf?dl=0 (accessed on 10.04.2024).

7. Pérez L.A.G. Heat pump vs boiler comparison guide. 2024. https://www.boilerguide.co.uk/compare/types/boiler-vs-heat-pump (accessed on 10.04.2024).

8. Tollefson J. Is it too late to keep global warming below 1.5 °C? The challenge in 7 charts. November 21, 2023. https://www.nature.com/immersive/d41586-023-03601-6/index.html?utm_source=Live+Audience&utm_campaign=7d1b6828a6-briefing-dy-20231122&utm_medium=email&utm_term=0_b27a691814-7d1b6828a6-51854944 (accessed on 10.04.2024).

9. 68% of the world population projected to live in urban areas by 2050. May 16, 2018. UN Department of Economic and Social Affairs. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 10.04.2024).

10. G20 energy transitions ministers’ meeting. Goa, India, July 22, 2023. Outcome document and chair’s summary. http://www.g20.utoronto.ca/2023/230722-energy.html (accessed on 10.04.2024).

11. COP28 UAE. https://www.cop28.com/ (accessed on 10.04.2024).

12. Ritchie H. How have the world’s energy sources changed over the last two centuries? December 1, 2021. Our World in Data. https://ourworldindata.org/global-energy-200-years (accessed on 10.04.2024).

13. Bryce E. How many calories can the brain burn by thinking? November 9, 2019. https://www.livescience.com/burn-calories-brain.html (accessed on 10.04.2024).

14. Baumann O. How much energy do we expend using our brains? April 27, 2023. https://bond.edu.au/news/how-much-energy-do-we-expend-using-our-brains (accessed on 10.04.2024).

15. Thompson N.C., Ge S., Manso G.F. The importance of (exponentially more) computing power. arXiv:2206.14007. https://arxiv.org/abs/2206.14007

16. Mehonic A., Kenyon A.J. Brain-inspired computing needs a master plan. Nature. 2022;604:255. https://doi.org/10.1038/s41586-021-04362-w

17. Amodei D., Hernandez D. AI and compute. May 16, 2018. OpenAI Blog. https://openai.com/blog/ai-and-compute/ (accessed on 10.04.2024).

18. Huestis S. Cryptocurrency’s energy consumption problem. January 30, 2023. ARMI. https://rmi.org/cryptocurrencys-energy-consumption-problem/ (accessed on 10.04.2024)

19. Trends in electric light-duty vehicles. https://www.iea.org/reports/global-ev-outlook-2023/trends-in-electric-light-duty-vehicles (accessed on 10.04.2024).

20. de Vries A. Bitcoin’s growing water footprint. Cell Reports Sustainability. 2024; 1(1): 100004. https://doi.org/10.1016/j.crsus.2023.100004

21. Suberg W. China controls 50% of bitcoin mining while US hits 14% – New survey. July 17, 2020. Cointelegraph. https://cointelegraph.com/news/china-controls-50-of-bitcoin-mining-while-us-hits-14-new-survey (accessed on 10.04.2024).

22. Huang R. After China’s bitcoin mining ban, bitcoin is stronger than ever. October 31, 2023. Forbes. https://www.forbes.com/sites/digital-assets/2023/10/31/after-chinas-bitcoin-mining-ban-bitcoin-is-stronger-than-ever/?sh=2586cbca2399 (accessed on 10.04.2024).

23. What is the energy consumption of the internet? April 20, 2023. Thunder Said Energy. https://thundersaidenergy.com/2023/04/20/what-is-the-energy-consumption-of-the-internet/ (accessed on 10.04.2024).

24. Belady C.L. In the data center, power and cooling costs more than the it equipment it supports. January 2007. Electronics Cooling. https://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/ (accessed on 10.04.2024).

25. Heyman K. The uncertain future of in-memory compute. December 13, 2023. Semiconductor Engineering. https://semiengineering.com/the-uncertain-future-of-in-memory-compute/?cmid=99c53822-8131-4051-97ba-a5a0f8c0d417 (accessed on 10.04.2024).

26. Aschenbrenner L. Situational awareness. The decade ahead. June 2024. https://situational-awareness.ai/ (accessed on 06.04.2024).

27. Miller D.A.B. Attojoule optoelectronics for low-energy information processing and communications. Journal of Lightwave Technology. 2017; 35(3): 346–396. https://doi.org/10.1109/JLT.2017.2647779

28. Nuclear Energy Summit 2024. Belgium, Brussels, March 21, 2024. https://www.iaea.org/events/nuclear-energy-summit-2024 (accessed on 10.04.2024).

29. Lindley B., Roulstone T., Locatelli G., Rooney M. Can fusion energy be cost-competitive and commercially viable? An analysis of magnetically confined reactors. Energy Policy. 2023;177:113511. https://doi.org/10.1016/j.enpol.2023.113511

30. Liu X., Ting J., He Y., Mercy M., Fiagbenu A., Zheng J., Wang D., Frost J., Musavigharavi P., Esteves G., Kisslinger K., Anantharaman S.B., Stach E., Olsson III R.H., Jariwala D. Reconfigurable compute-in-memory on field-programmable ferroelectric diodes. Nano Letters. 2022; 22(18): 7690—7698. https://doi.org/10.1021/acs.nanolett.2c03169

31. Ellis G., Gelman S.E. A preliminary model of global subsurface natural hydrogen resource potential. Geological Society of America Abstracts with Programs. 2022; 54(5). https://doi.org/10.1130/abs/2022AM-380270

32. Li Z., Fang S., Sun H., Chung R.-J., Fang X., He J.-H. Solar hydrogen. Advanced Energy Materials. 2023; 13(8): 2203019. https://doi.org/10.1002/aenm.202203019

33. Crownhart C. Solar panels are a pain to recycle. These companies are trying to fix that. August 19, 2021. https://www.technologyreview.com/2021/08/19/1032215/solar-panels-recycling/ (accessed on 10.04.2024).

34. Cheung A. Get a grip, unleash, lock in: An energy transition to-do list for 2024. January 16, 2024. BoombergNEF. https://about.bnef.com/blog/get-a-grip-unleash-lock-in-an-energy-transition-to-do-list-for-2024/ (accessed on 10.04.2024).

35. Global glut turns solar panels into garden fencing option. April 2, 2024. Financial Times. https://www.ft.com/content/2ea6bf6d-04e9-453b-a35f-cd6431cfc7bf (accessed on 10.04.2024).

36. Solar PV. July 11, 2023. https://www.iea.org/energy-system/renewables/solar-pv (accessed on 10.04.2024).

37. Williams M. New satellite successfully beams power from space. June 5, 2023. Universe Today. https://www.universetoday.com/161759/new-satellite-successfully-beams-power-from-space/#google_vignette (accessed on 10.04.2024).

38. Osman A.I., Chen L., Yang M., Msigwa G., Farghali M., Fawzy S., Rooney D.W., Yap P-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letttrs. 2023; 21: 741–764. https://doi.org/10.1007/s10311-022-01532-8

39. Schneider N. New photovoltaic materials: going beyond silicon. February 16, 2022. Polytechnique Insights. https://www.polytechnique-insights.com/en/braincamps/industry/how-new-materials-are-transforming-industry/new-photovoltaic-materials-going-beyond-silicon/ (accessed on 10.04.2024)

40. Williams M. Scientists beam solar power from space to earth in world first. June 6, 2023. Science Alert. https://www.sciencealert.com/scientists-beam-solar-power-from-space-to-earth-in-world-first (accessed on 10.04.2024).

41. New study updates NASA on space-based solar power. January 11, 2024. National Aeronautics and Space Administration. https://www.nasa.gov/organizations/otps/space-based-solar-power-report/ (accessed on 10.04.2024)

42. Modha D.S., Akopyan F., Andreopoulos A., Appuswamy R., Arthur J.V., Cassidy A.S., Datta P., DeBole M.V., Esser S.K., Otero C.O., Sawada J., Taba B., Amir A., Bablani D., Carlson P.J, Flickner M.D., Gandhasri R., Garreau G.J., Ito M., Klamo J.L., Kusnitz J.A., McClatchey N.J., McKinstry J.L., Nakamura Yu., Nayak T.K., Risk W.P., Schleupen K., Shaw B., Sivagnaname J., Smith D.F., Terrizzano I., Ueda T. Neural inference at the frontier of energy, space, and time. Science. 2023; 382(6668): 329—335. https://doi.org/10.1126/science.adh1174

43. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronics vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389

44. Christensen D.V., Dittmann R., Linares-Barranco B., Sebastian A., Le Gallo M., Redaelli A., Slesazeck S., Mikolajick T., Spiga S., Menzel S., Valov I., Milano G., Ricciardi C., Liang Sh.-J., Miao F., Lanza M., Quill T.J., Keene S.T., Salleo A., Grollier J., Marković D., Mizrahi A., Yao P., Yang J.J., Indiveri G., Strachan J.P., Datta S., Vianello E., Valentian A., Feldmann J., Li X., Pernice W.H.P., Bhaskaran H., Furber S., Neftci E., Scherr F., Maass W., Ramaswamy S., Tapson J., Panda P., Kim Y., Tanaka G., Thorpe S., Bartolozzi Ch., Cleland Th.A., Posch Ch., Liu Sh.Ch., Panuccio G., Mahmud M., Mazumder A.N., Hosseini M., Mohsenin T., Donati E., Tolu S., Galeazzi R., Christensen M.E., Holm S., Ielmini D., Pryds N. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering. 2022; 2: 022501. https://doi.org/10.1088/2634-4386/ac4a83

45. Roldan J.B., Maldonado D., Aguilera-Pedregosa C., Moreno E., Aguirre F., Romero-Zaliz R., García-Vico A.M., Shen Y., Lanza M. Spiking neural networks based on two-dimensional materials. npj 2D Materials and Applications. 2022; 6: 63. https://doi.org/10.1038/s41699-022-00341-5

46. Ledentsov N.N., Grundmann M., Heinrichsdorff F., Bimberg D., Ustinov V.M., Zhukov A.E., Maximov M.V., Alferov Z.I., Lott J.A. Quantum-dot heterostructure lasers. IEEE Journal of Selected Topics in Quantum Electronics. 2000; 6(3): 439. https://doi.org/10.1109/2944.865099

47. Krishnamourthy H.S. Power converters with edge intelligence: Toward greener, resilient, and sustainable energy systems. Tech Briefs. 2023; 47(11): 14. https://www.techbriefs.com/documents/issue-archive/9175-ntb-1123/file

48. U.S. National Science Foundation. Award Abstract # 2239966. CAREER: Enhancing the state of health and performance of electronics via in-situ monitoring and prediction (SHaPE-MaP) – Toward edge intelligence in power conversion. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2239966&HistoricalAwards=false (accessed on 10.04.2024).

49. What are Power Electronic Devices? Solar Power Electronic Devices. 2020. https://www.energy.gov/eere/solar/solar-power-electronic-devices (accessed on 10.04.2024).

50. Agrivoltaics. https://en.wikipedia.org/wiki/Agrivoltaics (accessed on 10.04.2024).

51. Chatterjee A., Lobato C.N., Zhang H., Bergne A., Esposito V., Yun S., Insinga A.R., Christensen D.V.,. Imbaquingo C, Bjørk R. Ahmed H., Ahmad M., Ho Ch.Y., Madsen M., Chen J., Norby P., Chiabrera F.M., Gunkel F., Ouyang Z., Pryds N. Powering internet-of-things from ambient energy: a review. Journal of Physics: Energy. 2023; 5(2): 022001. https://doi.org/10.1088/2515-7655/acb5e6

52. Energy harvesting. Semiconductor Engineering. https://semiengineering.com/kc/knowledge_center/energy-harvesting/165 (accessed on 10.04.2024).

53. Koon J. Energy harvesting starting to gain traction. April 18, 2022. Semiconductor Engineering. https://semiengineering.com/energy-harvesting-starting-to-gain-traction/?cmid=424419b7-6c4a-46ab-bd26-c060ae4d86d4 (accessed on 10.04.2024).

54. Whalen S.A., Apblett C.A., Aselage T.L. Improving power density and efficiency of miniature radioisotopic thermoelectric generators. Journal of Power Sources. 2008; 180(1): 657—663. https://doi.org/10.1016/j.jpowsour.2008.01.080

55. Deng H., Xiao S., Yang A., Wu H., Tang J., Zhang X., Li Y. Advances in nanogenerators for electrical power system state sensing and monitoring. Nano Energy. 2023; 115: 108738. https://doi.org/10.1016/j.nanoen.2023.108738

56. Basset P., Beeby S.P., Bowen C., Chew Z.J., Delbani A., Dharmasena R.D.I.G., Dudem B., Fan F.R., Galayko D., Guo H., Hao J., Hou Y., Hu Ch., Jing Q., Jung H.Y., Karan S.K., Kar-Narayan S., Kim M., Kim S.-W., Kuang Y., Lee K.J., Li J., Li Zh., Long Y., Priya Sh., Pu X., Ruan T., Silva S.R.P., Wang H.S.; Wang K., Wang X., Wang Zh.L., Wu W., Xu W., Zhang H., Zhang Y., Zhu M. Roadmap on nanogenerators and piezotronics featured. APL Materials. 2022; 10(10): 109201. https://doi.org/10.1063/5.0085850

57. Kumar A., Ansari M.N.M., Ibrahim S.M., Thomas P., Vaish R. Functionally graded piezoelectric energy harvester: A numerical study. Electronics. 2022; 11(16): 2595. https://doi.org/10.3390/electronics11162595

58. Bai Y. Exploring challenges and potential for a commercially viable piezoelectric energy harvesting system – Can Energy-as-Data concept thrive? Applied Physics Letters. 2024; 124(1): 110502. https://doi.org/10.1063/5.0193134

59. Ibrahim H.H., Singh M.J., Al-Bawri S.S., Ibrahim S.K., Islam M.T., Alzamil A., Islam M.S. Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors (Basel). 2022; 22(11): 4144. https://doi.org/10.3390/s22114144

60. Worthman E. Micro-power energy harvesting. April 7, 2014. Semiconductor Engineering. https://semiengineering.com/micro-power-energy-harvesting/ (accessed on 10.04.2024).

61. Tohidi F., Holagh S.G., Chitsaz A. Thermoelectric generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering. 2022; 201(Pt A): 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793

62. Korkmaz S., Kariper I.A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy. 2021; 84: 105888. https://doi.org/10.1016/j.nanoen.2021.105888

63. Mondal R., Hasan M.A.M., Baik J.M., Yang Y. Advanced pyroelectric materials for energy harvesting and sensing applications. Materials Today. 2023; 66: 273—301. https://doi.org/10.1016/j.mattod.2023.03.023

64. Donelan J.M., Li Q., Naing V., Hoffer J.A., Weber D.J., Kuo A.D. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science. 2008; 319(5864): 807—810. https://doi.org/10.1126/science.1149860

65. Choi D., Lee Y., Lin Z-H., Cho S., Kim M., Ao C.K., Soh S., Sohn C., Jeong C.K., Lee J,. Lee M., Lee S., Ryu J., Parashar P., Cho Y., Ahn J., Kim I.-D., Jiang F., Lee P.S., Khandelwal G., Kim S.-J., Kim H.S., Song H.-Ch., Kim M., Nah J., Kim W., Menge H.G., Park Y.T., Xu W., Hao J., Park H., Lee J.-H., Lee D.-M., Kim S.-W., Park J.Y., Zhang H., Zi Y., Guo R., Cheng J., Yang Z., Xie Y., Lee S., Chung J., Oh I.-K., Kim J.-S., Cheng T., Gao Q., Cheng G., Gu G., Shim M., Jung J., Yun Ch., Zhang Ch., Liu G., Chen Y., Kim S., Chen X., Hu J., Pu X., Guo Z.H., Wang X., Chen J., Xiao X., Xie X., Jarin M., Zhang H., Lai Y.-Ch., He T., Kim H., Park I., Ahn J., Huynh N.D., Yang Y., Wang Zh.L., Baik J.M., Choi D. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano. 2023; 17(12): 11087—11219. https://doi.org/10.1021/acsnano.2c12458

66. Zhang R., Hummelgård M., Örtegren J., Andersson H., Olsen M., Chen D., Li J., Eivazi A., Dahlström C., Norgren M., Wang Z.L. Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy. 2023; 115: 108737. https://doi.org/10.1016/j.nanoen.2023.108737

67. Shao Y., Luo B., Liu T., Cai C., Meng X., Wang S., Nie S. Harvesting energy from extreme environmental conditions with cellulosic triboelectric materials. Materials Today. 2023; 66: 348—370. https://doi.org/10.1016/j.mattod.2023.04.006

68. Bykov A.S., Malinkovich M.D., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Ksenich S.V., Zhukov R.N., Temirov A.A., Chichkov M.V., Polisan A.A., Parkhomenko Yu.N. Application of radioactive isotopes for beta-voltaic generators. Russian Microelectronics. 2017; 46: 527. https://doi.org/10.1134/S1063739717080054

69. Vidal J.V., Turutin A.V., Kubasov I.V., Kislyuk A.M., Kiselev D.A., Malinkovich M.D., Parkhomenko Y.N., Kobeleva S.P., Sobolev N.A., Kholkin A.L. Dual vibration and magnetic energy harvesting with bidomain LiNbO3-based composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020; 67(6): 1219—1229. https://doi.org/10.1109/TUFFC.2020.2967842

70. Vidal J.V., Slabov V., Kholkin A.L., dos Santos M.P.S. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review. Nano-Micro Letters. 2021; 13: 199. https://doi.org/10.1007/s40820-021-00713-4

71. Love C.J., Zhang S., Mershin A. Source of sustained voltage difference between the xylem of a potted Ficus benjamina tree and its soil. PLoS ONE. 2008; 3(8): e2963. https://doi.org/10.1371/journal.pone.0002963

72. Stauffer N.W. Engine on a chip promises to best the battery. September 15, 2006. MIT Energy Initiative. https://energy.mit.edu/news/engine-on-a-chip-promises-to-best-the-battery/ (accessed on 10.04.2024).

73. Hambling D. Darpa's handheld nuclear fusion reactor. July 6, 2009. WIRED. https://www.wired.com/2009/07/darpas-handheld-nuclear-fusion-reactor/ (accessed on 10.04.2024).


Supplementary files

Review

For citations:


Sobolev N.A. Energy, demand for computing power and the green world. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):175-193. (In Russ.) https://doi.org/10.17073/1609-3577j.met202406.597

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)