Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Microhardness of lithium niobate tantalate LiNb1-xTaxO3 solid solutions crystals

https://doi.org/10.17073/1609-3577j.met202406.598

Abstract

Growth of solid solutions of intermediate compositions LiNb1-xTaxO3 crystals allows you to adjust the physical parameters of the material and obtain crystals with the required properties, which is why obtaining such crystals and studying their properties taking into account anisotropy is an urgent task. Crystals of solid solutions of lithium niobate tantalate LiNb1-xTaxO3 of LiNb0.88Ta0.12O3 and LiNb0.93Ta0.07O3 compositions were grown in the work. Polished samples oriented in a standard installation were prepared from these crystals. The samples were subjected to monodomenization. The polarity of the piezoactive faces has been determined. By optical microscopy in transmitted light, patterns in the form of a sponge-like structure were observed on all samples of Z-cuts, patterns in the form of vertical regions parallel to the optical axis (Z-axis) were observed on samples of X- and Y-cuts. Taking into account anisotropy and polarity, measurements of the mechanical characteristics of the samples at a load of 25 gs were carried out: the microhardness of the samples according to Vickers HV calculated on the Mohs scale HM and the brittleness score Zx. According to the obtained data, the parameters of the «viscosity» S according to the Palmquist method and the degree of ionic bonds are calculated. The effect of the Nb : Ta ratio on the microhardness of Z-cuts is ambiguous, this may be due to the significant heterogeneity of such samples. In the case of X-cut samples, the results of microhardness measurements are close and within the error limits of the method. In the case of Y-cuts, there is a significant difference in the values of microhardness and brittleness of Y«+» and Y«–» sections, while the microhardness of the sample with a higher Nb content is higher.

About the Authors

E. V. Zabelina
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Evgenia V. Zabelina — Сand. Sci. (Phys.-Math.), Head of the Laboratory “Single Crystals and Stock on their Base”



N. S. Kozlova
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Nina S. Kozlova — Сand. Sci. (Phys.-Math.), Leading Expert, Laboratory “Single Crystals and Stock on their Base”



A. A. Mololkin
National University of Science and Technology “MISIS”; JSC Fomos-Materials; Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences
Russian Federation

4-1 Leninsky Ave., Moscow 119049;

16-1 Buzheninova Str., Moscow 107023;

6 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432

Anatoliy A. Mololkin — Cand. Sci. (Phys.-Math.), Researcher, Laboratory “Single Crystals and Stock on their Base” (1); Deputy Head of Production (2); Engineer (3)



V. M. Kasimova
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Valentina M. Kasimova — Cand. Sci. (Phys.-Math.), Researcher, Laboratory “Single Crystals and Stock on their Base”



R. R. Fakhrtdinov
Institute of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences
Russian Federation

6 Academician Ossipyan Str., Chernogolovka, Moscow Region 142432

Rashid R. Fakhrtdinov — Cand. Sci. (Phys.-Math.), Researcher



A. V. Sosunov
Perm State University
Russian Federation

15 Bukireva Str., Perm 614068

Aleksei V. Sosunov — Cand. Sci. (Eng.), Senior Researcher, Integrated Photonics and Nanotechnology



I. S. Didenko
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Irina S. Didenko — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Materials Science of Semiconductors and Dielectrics



References

1. Kuz’minov Yu.S. Lithium niobate and tantalate – materials for nonlinear optics. Moscow: Nauka; 1975. 224 p. (In Russ.)

2. Kuz’minov Yu.S. Electro-optical and nonlinear optical crystal of lithium niobate. Moscow: Nauka; 1987. 262 p. (In Russ.)

3. Blistanov A.A. Crystals of quantum and nonlinear optics. Moscow: MISIS; 2000. 432 p. (In Russ.)

4. Volk T., Wöhlecke M. Lithium niobate: defects, photorefraction and ferroelectric switching. Berlin: Springer; 2008. 250 p.

5. Otko A.I., Nosenko A.E., Volk T.R., Shuvalov L.A. Spatial visualization of domains in lithium niobate crystals. Ferroelectrics. 1993; 145(1): 163—180. https://doi.org/10.1080/00150199308222445

6. Otko I., Krainyuk G.G., Poplavko Yu.M., Shuvalov L.A. Thermo-and mechano-electret effects in lithium tantalate crystals. Ferroelectrics, Letters Section. 1994; 18(3-4): 127—132. https://doi.org/10.1080/07315179408203396

7. Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Yu.N. Bidomain ferroelectric crystals: properties and prospects of application. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020; 23(1): 5—56. (In Russ.). https://doi.org/10.17073/1609-3577-2020-1-5-56

8. Tomita I. Highly efficient cascaded difference-frequency generation in periodically poled LiNbO3 devices with resonators. IEEJ Transactions on Electrical and Electronic Engineering. 2018; 13(6): 1214—1215. https://doi.org/10.1002/tee.22687

9. Kurt M.Z. Electrooptical properties of LiTaO3. Ferroelectrics. 2003; 296(1): 127—137. https://doi.org/10.1080/714040649

10. Chauvet M., Henrot F., Bassignot F., Devaux F., Gauthier-Manuel L., Pêcheur V., Maillotte H., Dahmani B. High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon. Journal of Optics. 2016; 18(8): 085503. https://doi.org 10.1088/2040-8978/18/8/085503

11. Blistanov A.A., Geraskin V.V., Goreeva Zh.A., Klyukhina Yu.V. Determination of parameters of vector OOE synchronism in LiNbO3. Crystallography Reports. 2004; 49(2): 268—270. https://doi.org/10.1134/1.1690420

12. Geraskin V.V., Blistanov A.A., Goreeva J.A., Klyukhina J.V. Development of method of determination of Li/Nb ratio in LiNbO3 crystals. Ferroelectrics. 2003; 285(1): 327—337. https://doi.org/10.1080/00150190390206176

13. Shportenko A.S., Kubasov I.V., Kislyuk A.M., Turutin A.V., Malinkovich M.D., Parkhomenko Yu.N. The effect of contact phenomena on the measurement of electrical conductivity of reduced lithium niobate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021; 24(3): 199—210. (In Russ.). https://doi.org/10.17073/1609-3577-2021-3-199-210

14. Prudent Market. Global LiNbO3 Crystal Market Research Report 2022. Report ID: 136850. Published Date: 2022.12.19. 250 p.

15. Weis R.S., Gaylord T.K. Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A. 1985; 37: 191—203. https://doi.org/10.1007/BF00614817

16. Sosunov A.V., Ponomarev R.S., Yur’ev V.A., Volyntsev A.B. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits. Optoelectronics, Instrumentation and Data Processing. 2017; 53(1): 82—87. https://doi.org/10.3103/S8756699017010125

17. Zuev M.G., Moiseeva Yu.V. Subsolidus phase relations in the Li2O-Nb2O5-Ta2O5 system. Russian Journal of Inorganic Chemistry. 1998; 43(1): 124—135.

18. Gureva P., Kulikov A., Mololkin A., Fakhrtdinov R., Artemev A., Demkiv A., Pisarevsky Y., Marchenkov N. Local variations of the piezoelectric properties of an LiNb(1-x)TaxO3 crystal. Journal of Applied Crystallography. 2023; 56(Pt 2): 539—544. https://doi.org/10.1107/S160057672300211X

19. Mololkin A.A., Roshchupkin D.V., Emelin E.E., Fahrtdinov R.R. Properties of high-temperature poling ferroelectric crystals congruent solid solution LiNb0.5Ta0.5O3. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2021; 24(1): 34—39. (In Russ.). https://doi.org/10.17073/1609-3577-2021-1-34-39

20. Irzhak A., Irzhak D., Khvostikov V., Pundikov K., Roshchupkin D., Fahrtdinov R. Effect of local changes in the composition of the LiNb1-xTaxO3 single crystal on the Raman spectra. Journal of Raman Spectroscopy. 2022; 53(35): 969—976. https://doi.org/10.1002/jrs.6313

21. Vasylechko L., Sydorchuk V., Lakhnik A., Suhak Y., Wlodarczyk D., Hurskyy S., Yakhnevych U., Zhydachevskyy Y., Sugak D., Syvorotka I.I., Solskii I., Buryy O., Suchocki A., Fritze H. Investigations of LiNb1-xTaxO3 nanopowders obtained with mechanochemical method. Crystals. 2021; 11(7): 755. https://doi.org/10.3390/cryst11070755

22. Huband S., Keeble D.S., Zhang N., Glazer A.M., Bartasyte A., Thomas P.A. Crystallographic and optical study of LiNb1-xTaxO3. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials. 2017; 73(Pt 3): 498—506. https://doi.org/10.1107/S2052520617004711

23. Suhak Y., Roshchupkin D., Redkin B., Kabir A., Jerliu B., Ganschow S., Fritze H. Correlation of electrical properties and acoustic loss in single crystalline lithium niobate-tantalate solid solutions at elevated temperatures. Crystals. 2021; 11(4): 398. https://doi.org/10.3390/cryst11040398

24. Zabelina E.V., Mololkin A.A., Kozlova N.S., Kasimova V.M., Fakhrtdinov R.R., Umylin V.E., Sosunov A.V. Optical properties of crystals of lithium niobate-tantalate solid solutions LiNb1-xTaxO3. Crystallography Reports. 2023; 68(7): 1173—1179. https://doi.org/10.1134/S1063774523600874

25. Sosunov A.V., Ponomarev R.S., Mushinsky S.S., Volyntsev A.B., Mololkin A.A., Maléjacq V. Effect of the structure of the lithium niobate surface layer on the characteristics of optical waveguides. Crystallography Reports. 2020; 65(5): 786—791. https://doi.org/10.1134/S1063774520050223

26. Boldyrev A.I., Smolentsev V.P., Borodkin V.V. Fundamentals of mechanical engineering technology. Voronezh: GOUVPO “Voronezhskii gosudarstvennyi tekhnicheskii universitet”; 2010. 192 p. (In Russ.)

27. Lebedeva S.I. Determination of microhardness of minerals. Mocsow: Izd-vo Akademii nauk SSSR; 1963. 123 p. (In Russ.)

28. Shaskol’skaya M.P. Crystallography. Mocsow: Vysshaya shkola; 1984. 375 p. (In Russ.)

29. GOST 2999–75. Metals and alloys. Vickers hardness test by diamond pyramid. Мoscow: Gosudarstvennyi komitet SSSR po standartam; 1975. 31 p.

30. GOST 9450–76 (ST SEV 1195–78). Measurements microhardness by diamond instruments indentation. Мoscow: Izd-vo standartov; 1977. 35 p.

31. GOST R ISO 6507-1-2007. National standard of the Russian Federation metals and alloys. Metallic materials. Vickers hardness test. Pt 1: Test method. Мoscow: Standartinform; 2008. 19. p.

32. Kozlova N.S., Goreeva Zh.A., Zabelina E.V. Testing quality assurance of single crystals and stock on their base. In: Proceed. 2nd Int. Ural conf. on measurements (UralCon 2017). Chelyabinsk, Russia. 16–19 October 2017; 2017. P. 15—22, https://doi.org/10.1109/URALCON.2017.8120681

33. Glazov V.M., Vigdorovich V.N. Microhardness of metals. Moscow: Metallurgizdat; 1962. 224 p. (In Russ.)

34. Perelomova N.V., Tagieva M.M. Crystal physics: a collection of problems with solutions. Moscow: MISIS; 2013. 408 p. (In Russ.)

35. Yarunichev V.P., Berezovskaya G.S. Identification of the domain structure of lithium niobate by the polarization-optical method. Весці Акадэміі навук Беларусі. Серыя фізіка-матэматычных навук = Proceedings of the Academy of Sciences of the BSSR. Series of physical and mathematical sciences. 1979; 5: 126—128. (In Russ.)

36. Raghuram D.V., Raghavendra Rao A., Prasad P.M., Madhu G., Manikumari V. A correlation between hardness and bond ionicity in crystals. International Journal for Research in Applied Science & Engineering Technology. 2019; 7(3): 2680—2683. https://doi.org/10.22214/ijraset.2019.3488

37. Zabelina E.V., Kozlova N.S., Buzanov O.A., Krupnova E.D. Effect of postgrowth annealing in an oxygen-containing atmosphere on the microhardness of single-crystal calcium molybdate CaMoO4. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2023; 26(1): 66—75. (In Russ.). https://doi.org/10.17073/1609-3577-2023-1-66-75

38. Sirdeshmukh D.B., Sirdeshmukh L., Subhadra K.G., Rao K.K., Laxman S.B. Systematic hardness measurements on some rare earth garnet crystal. Bulletin of Materials Science. 2001; 24(5): 469—473. https://doi.org/10.1007/BF02706717


Supplementary files

Review

For citations:


Zabelina E.V., Kozlova N.S., Mololkin A.A., Kasimova V.M., Fakhrtdinov R.R., Sosunov A.V., Didenko I.S. Microhardness of lithium niobate tantalate LiNb1-xTaxO3 solid solutions crystals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):306-316. (In Russ.) https://doi.org/10.17073/1609-3577j.met202406.598

Views: 173


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)