Synthesis of nanodisperse powders oxides of cerium, yttrium and gadolinium
https://doi.org/10.17073/1609-3577j.met202405.601
Abstract
The article discusses the technology of obtaining nanodisperse powders of cerium, yttrium and gadolinium oxides. The process is based on the precipitation of carbonates from (REM) nitrates and their thermal decomposition. It was found that the particle sizes of nanodispersed REM oxide powders depend on the concentration of the initial nitrate solution of the rare earth metal, the speed of the carbonate deposition process, as well as the parameters of its thermal decomposition – temperature and time. The rapid and uniform supply of the precipitator in this work was realized by injecting a solution of (NH4)2CO3 into a constantly stirring reaction mass. The optimal heat treatment temperature was selected for each of the oxides. As a result of the work, kilogram batches of nanoscale powders of cerium, yttrium and gadolinium oxides with particle sizes in the range from 15 to 30 nm were obtained, the single-phase nature of which was confirmed by X-ray phase analysis data, and the particle sizes were determined using transmission electron microscopy.
About the Authors
A. A. OstrovskayaRussian Federation
34 Entuziastov Highway, Moscow 105118
Anna A. Ostrovskaya — Process Engineer, Master
O. I. Andreeva
Russian Federation
34 Entuziastov Highway, Moscow 105118
Olga I. Andreeva — Cand. Sci. (Chem.), Head of Laboratory for Diagnostics of High-Purity Inorganic Materials
K. A. Aksyonova
Russian Federation
34 Entuziastov Highway, Moscow 105118
Ksenia A. Aksyonova — Process Engineer, Master
E. L. Chuvilina
Russian Federation
34 Entuziastov Highway, Moscow 105118
Elena L. Chuvilina — Cand. Sci. (Eng.), Director
A. A. Gasanov
Russian Federation
34 Entuziastov Highway, Moscow 105118
Akhmedali Amirali Gasanov — Cand. Sci. (Chem.), Chief Technologist
E. V. Silina
Russian Federation
8-2 Trubetskaya Str., Moscow 119048
Ekaterina V. Silina — Doctor of Medicine, Professor
References
1. Bardakhanov S.P., Lysenko V.I., Malov A.N., Maslov N.A., Nomoev A.V. Structure and properties of ceramics of gadolinium oxide and yttrium oxide nanopowders. Physical Mesomechanics. 2008; 11(5): 111—114. (In Russ.)
2. Titov A.A., Klimenko M.A., Goryacheva E.G., Opolchenova N.L., Stepareva N.N., Sokolova N.P. Preparation of ceria and yttria nanopowders via thermal decomposition of oxalates, carbonates, and hydroxides. Inorganic Materials. 2008; 44(10): 1101—1104.
3. Patel D. Rare-earth-doped nanoparticles prove illuminating. SPIE Newsroom. The international society for optics and photonics. 2008. 3 p. https://doi.org/10.1117/2.1200810.1292
4. Shmyt'ko I.M., Kudrenko E.A., Strukova G.K., Klassen N.V. "Isomorphous" phases in nanodispersed powders of rare-earth oxides. Physics of the Solid State. 2008; 50(6): 1157—1164.
5. Pat. No 2001124684/12 (RU), IPC C01F17/00. Goryacheva E.G., Vdovina L.V., Karmannikov V.P. Method of finely divided yttrium oxide powder preparing. Appl.: 06.09.2001; publ.: 10.12.2002.
6. Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov E.Yu., Baranchikov A.E., Spivak N.Ya., Tret'yakov Yu.D. Nanocrystalline cerium dioxide is a promising material for biomedical applications. Biophysics. 2011; 56(6): 995—1015. (In Russ.)
7. Scherbakov A., Ermakov V., Zholobak N., Ivanov V. Methods of receiving biomaterials on the basis of nanodisperse dioxide of cerium. Birzha intellektual'noi sobstvennosti. 2014; 13(4): 31—37. (In Russ.)
8. Silina E.V., Ivanova O.S., Manturova N.E., Ivanova (Polezhaeva) O.S., Popov A., Mysina E.A., Artyushkova E.B., Kryukov A., Dodonova S.А., Kruglova M.P., Tinkov A.A., Skalny A.V., Ivanov V.K Influence of the synthesis scheme of nanocrystalline cerium oxide and its concentration on the biological activity of cells providing wound regeneration. International Journal of Molecular Sciences. 2023; 24(19): 14501. https://doi/org/10.3390/ijms241914501
9. Silina E.V., Ivanova O.S., Manturova N.E., Medvedeva O.A., Shevchenko A.V., Vorsina E.S., Achar R.R., Parfenov V.A., Stupin V.A. Antimicrobial activity of citrate-coated cerium oxide nanoparticles. Nanomaterials. 2024; 14(4): 354. https://doi/org/10.3390/nano14040354
10. Sakai N., Zhu L., Kurokawa A., Takeuchi H., Yano S., Yanoh T., Wada N., Taira Sh., Hosokai Y., Usui A., Machida Y., Saito H., Ichiyanagi Y. Synthesis of Gd2O3 nanoparticles for MRI contrast agents. Journal of Physics: Conference Series. 2012: 352(1): 2008. https://doi.org/10.1088/1742-6596/352/1/012008
11. Westmeyer G.G., Jasanoff A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magnetic Resonance Imaging. 2007; 25(6): 1004—1010. https://doi.org/10.1016/j.mri.2006.11.027
12. Ichiyanagi Y., Moritake S., Taira S., Setou M. Functional magnetic nanoparticles for medical application. Journal of Magnetism and Magnetic Materials. 2007; 310(2): 2877—2879. https://doi.org/10.1016/j.jmmm.2006.11.083
13. Moritake S., Taira S., Ichiyanagi Y., Morone N.; Song S.-Y., Hatanaka T., Shigeki Y., Setou M. Functionalized nano-magnetic particles for an in vivo delivery system. Journal of Nanoscience and Nanotechnology. 2007; 7(3): 937—944. https://doi.org/10.1166/jnn.2007.216
14. Shigeoka D., Katayanagi H., Moro Y., Kimura S., Mashino T., Hiroki T., Ichiyanagi Y. AC magnetic susceptibility of Co-Ti-Zn ferrite nanoparticles for hyperthermia agents. In: 3rd Inter. nanoelectronics conf. Hong-Kong, China; 2010. P. 904. https://doi.org/10.1109/inec.2010.5425140
15. Klasson A., Ahren M., Hellqvist E., Söderlind F., Rosén A., Käll P.-O., Uvdal K., Engström M. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media & Molecular Imaging. 2008; 3(3): 106—111. https://doi.org/10.1002/cmmi.236
16. Porosnicu I., Butnaru C.M., Tiseanu I., Stancu E., Munteanu Cr.V.A., Bogdan B., Duliu O.G., Nicolae F. SimaY2O3 nanoparticles and X-ray radiation-induced effects in melanoma cells. Molecules. 2021; 26: 3403—3419. https://doi.org/10.3390/molecules26113403
17. Setua S., Menon D., Asok A., Nair S., Koyakutty M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials. 2010; 31(4): 714—729. https://doi.org/10.1016/j.biomaterials.2009.09.090
18. Cavouras D., Kandarakis I., Panayiotakis G., Evangelou E.K., Nomicos C.D. An evaluation of the Y2O3:Eu3+ scintillator for application in medical x-ray detectors and image receptors. Medical Physics. 1996; 23(12): 1965—1975. https://doi.org/10.1118/1.597769
19. Skandani A., Pham T., Luhrs C., El-Genk M.S., Al-Haik M. Effects of composition and transparency on photo and radioluminescence of Y2O3:Eu complexes. Radiation Effects and Defects in Solids. 2011; 166(7): 501—512. https://doi.org/10.1080/10420150.2011.569720
20. Shivaramu N., Lakshminarasappa B., Nagabhushana. K.R., Singh F., Swart H.C. Synthesis, thermoluminescence and defect centres in Eu3+ doped Y2O3 nanophosphor for gamma dosimetry applications. Materials Research Express. 2017; 4(11): 115033. https://doi.org/10.1088/2053-1591/aa99ec
21. Santos S., Rodrigues O., Campos L. Bio-prototyping of europium-yttria based rods for radiation dosimetry. Materials Chemistry and Physics. 2017; 199(2017): 557—566. https://doi.org/10.1016/j.matchemphys.2017.07.063
22. Traina C.A., Schwartz J. Surface modification of Y2O3 nanoparticles. Langmuir. 2007; 23(18): 9158—9161. https://doi.org/10.1021/la701653v
23. Gasanov A.A., Yurasova O.V., Arzmanova A.B., Danilova E.A. Development of methods for the synthesis of nanosized powders with europium and gadolinium oxide. In: Proceed. of the XIII Russian-Chinese Symposium "New Materials and Technologies". Kazan, Russia, September 21–25, 2015. Moscow: Interkontakt nauka; 2015. Vol. 2. P. 770–772. (In Russ.)
24. Pat. No 2414330 (RU), IPC В22F9/16, C01F17/00, B82B3/00. Sokolova N.P., Titov A.A., Lapshina I.E., Vilyanskii A.M., Opolchenova N.L., Eremenko Z.V. Method of producing nano-sized powders of some lanthanide oxides. Appl.: 03.12.2008; publ:. 20.03.2011.
25. Alekseenko L.A. (ed.). Serebryannikov V.V. Chemistry of rare earth elements. In 2 vol. Tomsk: Izdatel'stvo tomskogo universiteta; 1959. Vol. 1. 531 p. (In Russ.)
Review
For citations:
Ostrovskaya A.A., Andreeva O.I., Aksyonova K.A., Chuvilina E.L., Gasanov A.A., Silina E.V. Synthesis of nanodisperse powders oxides of cerium, yttrium and gadolinium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):245-253. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.601