Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Synthesis of nanodisperse powders oxides of cerium, yttrium and gadolinium

https://doi.org/10.17073/1609-3577j.met202405.601

Abstract

The article discusses the technology of obtaining nanodisperse powders of cerium, yttrium and gadolinium oxides. The process is based on the precipitation of carbonates from (REM) nitrates and their thermal decomposition. It was found that the particle sizes of nanodispersed REM oxide powders depend on the concentration of the initial nitrate solution of the rare earth metal, the speed of the carbonate deposition process, as well as the parameters of its thermal decomposition – temperature and time. The rapid and uniform supply of the precipitator in this work was realized by injecting a solution of (NH4)2CO3 into a constantly stirring reaction mass. The optimal heat treatment temperature was selected for each of the oxides. As a result of the work, kilogram batches of nanoscale powders of cerium, yttrium and gadolinium oxides with particle sizes in the range from 15 to 30 nm were obtained, the single-phase nature of which was confirmed by X-ray phase analysis data, and the particle sizes were determined using transmission electron microscopy.

About the Authors

A. A. Ostrovskaya
LANHIT LLC
Russian Federation

34 Entuziastov Highway, Moscow 105118

Anna A. Ostrovskaya — Process Engineer, Master



O. I. Andreeva
LANHIT LLC
Russian Federation

34 Entuziastov Highway, Moscow 105118

Olga I. Andreeva — Cand. Sci. (Chem.), Head of Laboratory for Diagnostics of High-Purity Inorganic Materials



K. A. Aksyonova
LANHIT LLC
Russian Federation

34 Entuziastov Highway, Moscow 105118

Ksenia A. Aksyonova — Process Engineer, Master



E. L. Chuvilina
LANHIT LLC
Russian Federation

34 Entuziastov Highway, Moscow 105118

Elena L. Chuvilina — Cand. Sci. (Eng.), Director



A. A. Gasanov
LANHIT LLC
Russian Federation

34 Entuziastov Highway, Moscow 105118

Akhmedali Amirali Gasanov — Cand. Sci. (Chem.), Chief Technologist



E. V. Silina
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., Moscow 119048

Ekaterina V. Silina — Doctor of Medicine, Professor



References

1. Bardakhanov S.P., Lysenko V.I., Malov A.N., Maslov N.A., Nomoev A.V. Structure and properties of ceramics of gadolinium oxide and yttrium oxide nanopowders. Physical Mesomechanics. 2008; 11(5): 111—114. (In Russ.)

2. Titov A.A., Klimenko M.A., Goryacheva E.G., Opolchenova N.L., Stepareva N.N., Sokolova N.P. Preparation of ceria and yttria nanopowders via thermal decomposition of oxalates, carbonates, and hydroxides. Inorganic Materials. 2008; 44(10): 1101—1104.

3. Patel D. Rare-earth-doped nanoparticles prove illuminating. SPIE Newsroom. The international society for optics and photonics. 2008. 3 p. https://doi.org/10.1117/2.1200810.1292

4. Shmyt'ko I.M., Kudrenko E.A., Strukova G.K., Klassen N.V. "Isomorphous" phases in nanodispersed powders of rare-earth oxides. Physics of the Solid State. 2008; 50(6): 1157—1164.

5. Pat. No 2001124684/12 (RU), IPC C01F17/00. Goryacheva E.G., Vdovina L.V., Karmannikov V.P. Method of finely divided yttrium oxide powder preparing. Appl.: 06.09.2001; publ.: 10.12.2002.

6. Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov E.Yu., Baranchikov A.E., Spivak N.Ya., Tret'yakov Yu.D. Nanocrystalline cerium dioxide is a promising material for biomedical applications. Biophysics. 2011; 56(6): 995—1015. (In Russ.)

7. Scherbakov A., Ermakov V., Zholobak N., Ivanov V. Methods of receiving biomaterials on the basis of nanodisperse dioxide of cerium. Birzha intellektual'noi sobstvennosti. 2014; 13(4): 31—37. (In Russ.)

8. Silina E.V., Ivanova O.S., Manturova N.E., Ivanova (Polezhaeva) O.S., Popov A., Mysina E.A., Artyushkova E.B., Kryukov A., Dodonova S.А., Kruglova M.P., Tinkov A.A., Skalny A.V., Ivanov V.K Influence of the synthesis scheme of nanocrystalline cerium oxide and its concentration on the biological activity of cells providing wound regeneration. International Journal of Molecular Sciences. 2023; 24(19): 14501. https://doi/org/10.3390/ijms241914501

9. Silina E.V., Ivanova O.S., Manturova N.E., Medvedeva O.A., Shevchenko A.V., Vorsina E.S., Achar R.R., Parfenov V.A., Stupin V.A. Antimicrobial activity of citrate-coated cerium oxide nanoparticles. Nanomaterials. 2024; 14(4): 354. https://doi/org/10.3390/nano14040354

10. Sakai N., Zhu L., Kurokawa A., Takeuchi H., Yano S., Yanoh T., Wada N., Taira Sh., Hosokai Y., Usui A., Machida Y., Saito H., Ichiyanagi Y. Synthesis of Gd2O3 nanoparticles for MRI contrast agents. Journal of Physics: Conference Series. 2012: 352(1): 2008. https://doi.org/10.1088/1742-6596/352/1/012008

11. Westmeyer G.G., Jasanoff A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magnetic Resonance Imaging. 2007; 25(6): 1004—1010. https://doi.org/10.1016/j.mri.2006.11.027

12. Ichiyanagi Y., Moritake S., Taira S., Setou M. Functional magnetic nanoparticles for medical application. Journal of Magnetism and Magnetic Materials. 2007; 310(2): 2877—2879. https://doi.org/10.1016/j.jmmm.2006.11.083

13. Moritake S., Taira S., Ichiyanagi Y., Morone N.; Song S.-Y., Hatanaka T., Shigeki Y., Setou M. Functionalized nano-magnetic particles for an in vivo delivery system. Journal of Nanoscience and Nanotechnology. 2007; 7(3): 937—944. https://doi.org/10.1166/jnn.2007.216

14. Shigeoka D., Katayanagi H., Moro Y., Kimura S., Mashino T., Hiroki T., Ichiyanagi Y. AC magnetic susceptibility of Co-Ti-Zn ferrite nanoparticles for hyperthermia agents. In: 3rd Inter. nanoelectronics conf. Hong-Kong, China; 2010. P. 904. https://doi.org/10.1109/inec.2010.5425140

15. Klasson A., Ahren M., Hellqvist E., Söderlind F., Rosén A., Käll P.-O., Uvdal K., Engström M. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles. Contrast Media & Molecular Imaging. 2008; 3(3): 106—111. https://doi.org/10.1002/cmmi.236

16. Porosnicu I., Butnaru C.M., Tiseanu I., Stancu E., Munteanu Cr.V.A., Bogdan B., Duliu O.G., Nicolae F. SimaY2O3 nanoparticles and X-ray radiation-induced effects in melanoma cells. Molecules. 2021; 26: 3403—3419. https://doi.org/10.3390/molecules26113403

17. Setua S., Menon D., Asok A., Nair S., Koyakutty M. Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials. 2010; 31(4): 714—729. https://doi.org/10.1016/j.biomaterials.2009.09.090

18. Cavouras D., Kandarakis I., Panayiotakis G., Evangelou E.K., Nomicos C.D. An evaluation of the Y2O3:Eu3+ scintillator for application in medical x-ray detectors and image receptors. Medical Physics. 1996; 23(12): 1965—1975. https://doi.org/10.1118/1.597769

19. Skandani A., Pham T., Luhrs C., El-Genk M.S., Al-Haik M. Effects of composition and transparency on photo and radioluminescence of Y2O3:Eu complexes. Radiation Effects and Defects in Solids. 2011; 166(7): 501—512. https://doi.org/10.1080/10420150.2011.569720

20. Shivaramu N., Lakshminarasappa B., Nagabhushana. K.R., Singh F., Swart H.C. Synthesis, thermoluminescence and defect centres in Eu3+ doped Y2O3 nanophosphor for gamma dosimetry applications. Materials Research Express. 2017; 4(11): 115033. https://doi.org/10.1088/2053-1591/aa99ec

21. Santos S., Rodrigues O., Campos L. Bio-prototyping of europium-yttria based rods for radiation dosimetry. Materials Chemistry and Physics. 2017; 199(2017): 557—566. https://doi.org/10.1016/j.matchemphys.2017.07.063

22. Traina C.A., Schwartz J. Surface modification of Y2O3 nanoparticles. Langmuir. 2007; 23(18): 9158—9161. https://doi.org/10.1021/la701653v

23. Gasanov A.A., Yurasova O.V., Arzmanova A.B., Danilova E.A. Development of methods for the synthesis of nanosized powders with europium and gadolinium oxide. In: Proceed. of the XIII Russian-Chinese Symposium "New Materials and Technologies". Kazan, Russia, September 21–25, 2015. Moscow: Interkontakt nauka; 2015. Vol. 2. P. 770–772. (In Russ.)

24. Pat. No 2414330 (RU), IPC В22F9/16, C01F17/00, B82B3/00. Sokolova N.P., Titov A.A., Lapshina I.E., Vilyanskii A.M., Opolchenova N.L., Eremenko Z.V. Method of producing nano-sized powders of some lanthanide oxides. Appl.: 03.12.2008; publ:. 20.03.2011.

25. Alekseenko L.A. (ed.). Serebryannikov V.V. Chemistry of rare earth elements. In 2 vol. Tomsk: Izdatel'stvo tomskogo universiteta; 1959. Vol. 1. 531 p. (In Russ.)


Review

For citations:


Ostrovskaya A.A., Andreeva O.I., Aksyonova K.A., Chuvilina E.L., Gasanov A.A., Silina E.V. Synthesis of nanodisperse powders oxides of cerium, yttrium and gadolinium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(3):245-253. (In Russ.) https://doi.org/10.17073/1609-3577j.met202405.601

Views: 167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)