Parameters of ohmic contacts and consideration of the influence of actual sample sizes on the field dependence of the drift velocity in In0.16Ga0.84As layers
https://doi.org/10.17073/1609-3577j.met202407.602
Abstract
The method of obtaining ohmic contact to In0.16Ga0.84As layers is given in this paper. Contact resistance was measured by the transmission line method with radial geometry of contacts. It is shown that the Ni/Au/Ge/Au/Ge/Ni/Au-based contact is ohmic and reaches a minimum specific contact resistance of 6∙10-5 Ohm∙cm2 after annealing at 450 °C for 5 min. in the atmosphere of forming gas. To measure the dependence of the drift velocity on a high electric field, a sample with a specific shape was chosen that prevents the penetration of high field domains into the measurement area. An expression is obtained that allows for accurate calculation of electric field strength and drift velocity, considering the actual geometric sizes of the sample as determined by scanning electron microscopy. It is shown that the obtained expression allows us to obtain the same field dependences of the drift velocity for In0.16Ga0.84As samples with different geometrical sizes.
Keywords
About the Authors
V. A. KuznetsovRussian Federation
13 Acad. Lavrentieva Ave., Novosibirsk 630090;
20 Karla Marksa Ave., Novosibirsk 630073
Vadim A. Kuznetsov — Postgraduate Student, Senior Engineer
D. Yu. Protasov
Russian Federation
13 Acad. Lavrentieva Ave., Novosibirsk 630090;
20 Karla Marksa Ave., Novosibirsk 630073
Dmitry Yu. Protasov — Cand. Sci. (Phys.-Math.), Senior Researcher
D. V. Dmitriev
Russian Federation
13 Acad. Lavrentieva Ave., Novosibirsk 630090
Dmitriy V. Dmitriev — Junior Researcher
V. Ya. Kostyuchenko
Russian Federation
10 Plakhotnogo Str., Novosibirsk 630108
Vladimir Ya. Kostyuchenko — Dr. Sci. (Phys.-Math.), Professor
D. I. Rogilo
Russian Federation
13 Acad. Lavrentieva Ave., Novosibirsk 630090
Dmitry I. Rogilo — Cand. Sci. (Phys.-Math.), Senior Researcher
K. S. Zhuravlev
Russian Federation
13 Acad. Lavrentieva Ave., Novosibirsk 630090
Konstantin S. Zhuravlev — Dr. Sci. (Phys.-Math.), Head of Laboratory
References
1. Tokumitsu T., Kubota M., Sakai K., Kawai T. Application of GaAs device technology to millimeter-waves. SEI Technical Review. 2014; (79): 57—65.
2. Cho S.J., Wang C., Kim N.Y. High power density AlGaAs/InGaAs/GaAs PHEMTs using an optimized manufacturing process for Ka-band applications. Microelectronic Engineering. 2014; 113: 11—19. https://doi.org/10.1016/j.mee.2013.07.001
3. Pashkovskii A.B., Bogdanov S.A., Bakarov A.K., Grigorenko A.B., Zhuravlev K.S., Lapin V.G., Lukashin V.M., Rogachev I.A., Tereshkin E.V., Shcherbakov S.V. Millimeter-wave donor-acceptor-doped DpHEMT. IEEE Transactions on Electron Devices. 2021; 68(1): 53—56. https://doi.org/10.1109/TED.2020.3038373
4. Chen Y.C., Bhattacharya P.K. Determination of critical layer thickness and strain tensor in InxGa1-xAs/GaAs quantum-well structures by x-ray diffraction. Journal of Applied Physics. 1993; 73(11): 7389—7394. https://doi.org/10.1063/1.354030
5. Požela J. Physics of high-speed transistors. New York: Plenum Press; 1993. 337 p. https://doi.org/10.1007/978-1-4899-1242-8
6. Ivashchenko V.M., Mitin V.V. Modeling of kinetic phenomena in semiconductors. Monte Carlo method. Kiev: Nauk. dumka; 1990. 189 p. (In Russ.)
7. Vorobiev L.E. Hot electrons in semiconductors and nanostructures. St. Petersburg: Izd-vo SPbGTU; 1999. 154 p. (In Russ.)
8. Kablukova E., Sabelfeld K.K., Protasov D., Zhuravlev K. Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures. Monte Carlo Methods and Applications. 2023; 29(4): 307—322. https://doi.org/10.1515/mcma-2023-2019
9. Thobel J.L., Baudry L., Cappy A., Bourei P., Fauquembergue R. Electron transport properties of strained InxGa1-xAs. Applied Physics Letters. 1990; 56(4): 346—348. https://doi.org/10.1063/1.102780
10. Ayzenshtat G.I., Bozhkov V.G., Yushchenko A.Y. Measurement of the electron saturation velocity in an AlGaAs/InGaAs quantum well. Russian Physics Journal. 2011; 53(9): 914—920. https://doi.org/10.1007/s11182-011-9510-x
11. Šilenas A., Požela Yu., Požela K., Jucienė V., Vasil’evskii I.S., Galiev G.B., Pushkarev S.S., Klimov E.A. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts. Semiconductors, 2013; 47: 372—375. https://doi.org/10.1134/S1063782613030263
12. Protasov D.Yu., Gulyaev D.V., Bakarov A.K., Toropov A.I., Erofeev E.V., Zhuravlev K.S. Increasing saturated electron-drift velocity in donor-acceptor doped pHEMT heterostructures. Technical Physics Letters. 2018; 44: 260—262. https://doi.org/10.1134/S1063785018030240
13. Kim I.H. Pd/Ge(or Si)/Pd/Ti/Au Ohmic Contacts to n-type InGaAs for AlGaAs/GaAs HBTs. Metals and Materials International. 2004; 10(4): 381—386.
14. Lee J.-M., Choi I.-H., Park S. H., Min B.-G., Lee T.-W., Park M. P., Lee K.-H. WNx/WN0.5x/W ohmic contact to n-InGaAs and its application to AlGaAs/GaAs heterojunction bipolar transistors. Journal of the Korean Physical Society. 2000; 37(1): 43—48.
15. Iliadis A.A., Zahurak J.K., Neal T., Masselink W.T. Lateral diffusion effects in AuGe based source-drain contacts to AlInAs/InGaAs/InP doped channel MODFETs. Journal of Electronic Materials. 1999; 28(8): 944—948.
16. Yearsley J.D., Lin J.C., Hwang E., Datta S., Mohney S.E. Ultra low-resistance palladium silicide Ohmic contacts to lightly doped n-InGaAs. Journal of Applied Physics. 2012; 112: 054510. https://doi.org/10.1063/1.4748178
17. Nebauer E., Mai M., Richter E., Würfl J. Low resistance, thermally stable Au/Pt/Ti/WSiN ohmic contacts on n+-InGaAs/n-GaAs layer systems. Journal of Electronic Materials. 1998; 27(12): 1372—1374. https://doi.org/10.1007/s11664-998-0100-9
18. Barker J.M., Akis R., Thornton T.J., Ferry D.K., Goodnick S.M. High field transport studies of GaN. Physica Status Solidi. 2002; 190(1): 263—270.
19. Barker J.M., Ferry D.K., Koleske D.D., Shul R.J. Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models. Journal of Applied Physics. 2005; 97: 063705. https://doi.org/10.1063/1.1854724
20. Yang D., Bhattacharya P.K., Hong W.P., Bhat R., Hayes J. R. High-field transport properties of lnAsxP1-x/InP (0.3≤x≤1) modulation doped heterostructures at 300 and 77 K. Journal of Applied Physics. 1992; 72(1): 174—178. https://doi.org/10.1063/1.352154
21. Gulyaev D.V., Zhuravlev K.S., Bakarov A.K., Toropov A.I., Protasov D.Yu., Gutakovskii A.K., Ber B.Ya., Kazantsev D.Yu. Influence of the additional p+ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors. Journal Physics D: Applied Physics. 2016; 49: 095108. https://doi.org/10.1088/0022-3727/49/9/095108
22. Andreev A.N., Rastegaeva M.G., Rastegaev V.P., Reshanov S.A. Allowing for current spreading in semiconductors during measurements of the contact resistivity of ohmic contacts. Semiconductors. 1998; 32: 739—744. https://doi.org/10.1134/1.1187496
23. Khan I.A., Cooper J.A. Measurement of high-field electron transport in silicon carbide. IEEE Transactions on Electron Devices. 2000; 47(2): 269—273. https://doi.org/10.1109/16.822266
24. Požela J., Požela K., Raguotis R., Jucienė V. Drift velocity of electrons in quantum wells of selectively doped In0.5Ga0.5As/AlxIn1-xAs and In0.2Ga0.8As/AlxGa1-xAs heterostructures in high electric fields. Semiconductors. 2011; 45: 761—765. https://doi.org/10.1134/S1063782611060212
25. Thobel J.L., Baudry L., Bourel P., Dessenne F., Charef M. Monte Carlo modeling of high-field transport in III-V heterostructures. Journal of Applied Physics. 1993; 74(10): 6274—6280. https://doi.org/10.1063/1.355145
Review
For citations:
Kuznetsov V.A., Protasov D.Yu., Dmitriev D.V., Kostyuchenko V.Ya., Rogilo D.I., Zhuravlev K.S. Parameters of ohmic contacts and consideration of the influence of actual sample sizes on the field dependence of the drift velocity in In0.16Ga0.84As layers. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(1):44-54. (In Russ.) https://doi.org/10.17073/1609-3577j.met202407.602