Effect of boron impurities of different concentrations on the sensory properties of carbon nanotubes with respect to carbon dioxide
https://doi.org/10.17073/1609-3577j.met202310.605
Abstract
Nanotubes, being one of the most sought after materials in nanotechnology, are finding new areas of application, such as filters for harmful gases. However, in practical applications of nanotubes, it often turns out that, after capturing the analyzed substance, there is no change in their electronic state. This makes it difficult to detect the fact of adsorption of a substance by electronic devices, such as touch sensors. One way to solve this problem could be to modify the surface of carbon nanotubes with various atoms, which leads to the creation of nanotubular heterostructures. One of the most effective substances for carrying out the substitution reaction is boron. It allows the creation of a redistribution of the electron density on the surface of nanotubes without introducing significant changes to the topology of the nanotube surface. This, in turn, leads to a change in the electron-energy structure of the resulting systems and can lead to a more pronounced change in this structure during the sorption of atoms and molecules on the surface of such modified nanotubes. This paper analyzes the effect of boron impurities of different concentrations on the sensory activity of such boron-modified carbon nanotubes towards carbon dioxide to study the possibility of using boron-carbon systems such as a material for high-performance sensors.
Keywords
About the Authors
S. V. BorozninRussian Federation
100 Universitetsky Ave., Volgograd 400062
Sergey V. Boroznin — Cand. Sci. (Phys.-Math.), Associate Professor, Head of the Department of Forensic Science and Physical Materials Science
I. V. Zaporotskova
Russian Federation
100 Universitetsky Ave., Volgograd 400062
Irina V. Zaporotskova — Dr. Sci. (Phys.-Math.), Professor, Director of the Institute of Priority Technologies
P. A. Zaporotskov
Russian Federation
100 Universitetsky Ave., Volgograd 400062
Pavel A. Zaporotskov — Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Forensic Science and Physical Materials Science
N. P. Boroznina
Russian Federation
100 Universitetsky Ave., Volgograd 400062
Natalya P. Boroznina — Dr. Sci. (Phys.-Math.), Professor, Department of Forensic Science and Physical Materials Science
L. V. Kozhitov
Russian Federation
4-1 Leninsky Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor
A. V. Popkova
Russian Federation
24 Zheleznodorozhnaya Str., Podolsk 142103
Alena V. Popkova — Cand. Sci. (Eng.), Senior Researcher
References
1. Zhiqiang G., Boru Y., Jinping J., Xuehong W. Research progress on carbon dioxide reduction coupled with the formation of C−O bonds to oxygenated compounds. Asian Journal of Organic Chemistry. 2023; 12(5): e202300097. https://doi.org/10.1002/ajoc.202300097
2. Srivastava S., Singh P., Gupta G. Transition metal tellurides based gas sensors for efficient sensing at room temperature: Progress and prospective. Micro and Nanostructures. 2022; 172: 207452. https://doi.org/10.1016/j.micrna.2022.207452
3. Struzzi C., Scardamaglia M., Casanova-Chafer J., Calavia R., Colomer J.-F., Kondyurin A., Bilek M., Britun N., Snyders R., Llobet E., Bittencourt C. Exploiting sensor geometry for enhanced gas sensing properties of fluorinated carbon nanotubes under humid environment. Sensors and Actuators B: Chemical. 2019; 281: 945—952. https://doi.org/10.1016/j.snb.2018.10.159
4. Ghosh D., Ghorai P., Debnath S., Roy D., Samanta A., Maiti K.S., Sarkar S., Roy D., Sarkar K., Banerjee R. Ch. 6. Impression of climatic variation on flora, fauna and human Being: A present state of art. In: Dubey A.K., Kumar A., Narang S.K., Khan M.A., Srivastav A.L. (eds.). Visualization techniques for climate change with machine learning and artificial intelligence; 2023. P. 101—122. https://doi.org/10.1016/B978-0-323-99714-0.00004-2
5. Shrisha, Wu Ch.-M., Kebena G.M., Guan-Ying C., Dong-Hau K., Noto S.G. Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature. Materials Science and Engineering: B. 2023; 289: 116285. https://doi.org/10.1016/j.mseb.2023.116285
6. Yao J., Nan Z., Juhua X., Quan J., Xiaoguang S., Xiaolong W. Co3O4/In2O3 p-n heterostructures based gas sensor for efficient structure-driven trimethylamine detection. Ceramics International. 2023; 49(11(Pt A)): 17354—17362. https://doi.org/10.1016/j.ceramint.2023.02.103
7. Lukyanov G.N. Sensors and sensors of physical quantities. St. Petersburg: NIU ITMO; 2020. 57 p. (In Russ.)
8. Xinqi L., Huiling Y., Qian Z., Bingyuan H., Fang L., Hejun G., Hongquan F., Juan Z., Yunwen L. Understanding the adsorption sites on nitrogen- and oxygen-doped carbon nanotubes for iodine uptake. Applied Surface Science. 2023; 629: 157387. https://doi.org/10.1016/j.apsusc.2023.157387
9. Cheng Z., Jiabin S., Shanshan X., Jing W., Haiquan L., Siqi X., Yingjie P., Yong Z., Yongheng Z. Food Chemistry. 2022; 392: 133318. https://doi.org/10.1016/j.foodchem.2022.133318
10. Zeyao F., Xueli Y., Zhenhua L., Caixuan S., Guofeng P., Hao Z. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Construction of efficient TEA gas sensor based on zinc vanadate for ppb-level detection. Materials Science in Semiconductor Processing. 2023; 156: 107285. https://doi.org/10.1016/j.mssp.2022.107285
11. Xue Sh.-Sh., Tang Zh.-H., Zhu W.-B., Li Y.-Q., Huang P., Fu Sh.-Y. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Composites Communications. 2022; 29: 100987. https://doi.org/10.1016/j.coco.2021.100987
12. Singh K., Sharma S., Singh B., Gupta M., Tripathi C.C. Fabrication of graphene, graphite and multi wall carbon nano tube based thin films and their potential application as strain sensor. Thin Solid Films. 2022; 761: 139540. https://doi.org/10.1016/j.tsf.2022.139540
13. Martins F.G., Thakur C.K., Karthikeyan C., Moorthy N.S.H.N., Sousa S.F. Use of lysinated multiwalled carbon nanotubes with carbohydrate ligands as a doxorubicin nanocarrier: A molecular dynamics analysis. Carbon Trends. 2023; 12: 100280. https://doi.org/10.1016/j.cartre.2023.100280
14. Seman R.N.A.R., Azam M.A., Mohamad A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renewable and Sustainable Energy Reviews. 2017; 75: 644—659. https://doi.org/10.1016/j.rser.2016.10.078
15. Andalouci A., Roussigné Y., Gangloff L., Legagneux P., Farhat S., Chérif S.M. 1D cobalt nanocrystals confined in vertically aligned carbon nanotubes: One-step synthesis and magnetic properties. Journal of Alloys and Compounds. 2023; 960: 170984. https://doi.org/10.1016/j.jallcom.2023.170984
16. Sheng Z., Xiaoxin Y., Yixi Y., Xinrui Z., Lan L., Xiao W., Gaoyi H., Yan L. One-dimensional heterostructures of polyoxometalate-encapsulated carbon nanotubes for enhanced capacitive energy storage. Cell Reports Physical Science. 2023; 4(6): 101446. https://doi.org/10.1016/j.xcrp.2023.101446
17. Jawad A., Zhiguang Z. Properties of concrete with addition carbon nanotubes: A review. Construction and Building Materials. 2023; 393: 132066. https://doi.org/10.1016/j.conbuildmat.2023.132066
18. Xinyue Z., Guili Y. Overlapping of linear optical spectra in metallic carbon nanotubes, Controlled by applied axial magnetic field and uniaxial strain. Physica B: Condensed Matter. 2023; 666: 415102. https://doi.org/10.1016/j.physb.2023.415102
19. Hailong L., Cheng Z., Ningbo L., Miao Z. Microcracked strain sensor based on carbon nanotubes/copper composite film with high performance and waterproof property for underwater motion detection. Composites Part B: Engineering. 2023; 254: 110574. https://doi.org/10.1016/j.compositesb.2023.110574
20. Santhosh N.M., Vasudevan A., Jurov A., Korent A., Slobodian P., Zavašnik J., Cvelbar U. Improving sensing properties of entangled carbon nanotube-based gas sensors by atmospheric plasma surface treatment. Microelectronic Engineering. 2020; 232: 111403. https://doi.org/10.1016/j.mee.2020.111403
21. Katta S.S., Yadav S., Singh P., Bhushan S., Srivastava A. Investigation of pristine and B/N/Pt/Au/Pd doped single-walled carbon nanotube as phosgene gas sensor: A first-principles analysis. Applied Surface Science. 2022; 588: 152989. https://doi.org/10.1016/j.apsusc.2022.152989
22. Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering Journal. 2022; 427: 131616. https://doi.org/10.1016/j.cej.2021.131616
23. Mansurov R.S., Gurin M.A, Rubel E.V. The effect of cardon dioxide concentration on the human body. Universum: Technical Science. 2017; 8(41): 20—23. (In Russ.)
24. Zaporotskova I.V., Boroznina N.P., Dryuchkov E.S., Shek T.S., Butenko Y.V., Zaporotskov P.A. Surface functionalization of CNTs by a nitro group as a sensor device element: Theoretical research. Journal of Advanced Materials and Technologies. 2021; 6(2): 113—121. https://doi.org/10.17277/ jamt.2021.02.pp.113-121
25. Boroznina N., Zaporotskova I., Boroznin S., Dryuchkov E. Sensors based on amino group surface-modified CNTs. Chemosensors. 2019; 7(1): 11. https://doi.org/10.3390/CHEMOSENSORS7010011
26. Boroznina N.P., Zaporotskova I.V., Zaporotskov P.A., Kozhitov L.V., Erofeev D.R. Studies of the interaction of modified nitro group boronitride nanotubes with gas-phase carbon-containing molecules to create sensor devices. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2022; 25(4): 261—270. (In Russ.). https://doi.org/10.17073/1609-3577-2022-4-261-270
27. Boroznin S.V., Zaporotskova I.V. Sensory properties of carbon nanotubes containing impurity boron atoms. Letters on Materials. 2022; 12(3): 214—218. https://doi.org/10.22226/2410-3535-2022-3-214-218
28. Boroznin S.V. Carbon nanostructures containing boron impurity atoms: synthesis, physicochemical properties and potential applications. Modern Electronic Materials. 2022; 8(1): 23—42. https://doi.org/10.3897/j.moem.8.1.84317
29. Boroznina N.P., Zaporotskova I.V., Boroznin S.V., Kozhitov L.V., Zaporotskov P.A. In: The 5th World congress on recent advances in nanotechnology (RAN'20). October 2020; 2020. No 125. https://doi.org/10.11159/icnnfc20.125
30. Khan F., Julien C.M., Islam S.S. Fabrication of multiwalled carbon nanotubes/MoS2 nanocomposite: Application as temperature sensor. FlatChem. 2023; 40: 100521. https://doi.org/10.1016/j.flatc.2023.100521
Review
For citations:
Boroznin S.V., Zaporotskova I.V., Zaporotskov P.A., Boroznina N.P., Kozhitov L.V., Popkova A.V. Effect of boron impurities of different concentrations on the sensory properties of carbon nanotubes with respect to carbon dioxide. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(2):146-153. (In Russ.) https://doi.org/10.17073/1609-3577j.met202310.605