Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Directional crystallization of Ge1-xSix solid solutions

https://doi.org/10.17073/1609-3577j.met202407.606

Abstract

As a result of the analysis of the published results of studies on obtaining solid solutions of germanium – silicon, the possibilities of developing the technology of obtaining homogeneous crystals by methods of directional crystallization of melts are estimated.
Technological capabilities achieved in the last two or three decades make it possible to obtain Ge-Si single crystals with both variable and constant axial composition in the entire continuous series of solid solutions, and thereby meet the needs of scientific research. However, for the profitability of obtaining ingots of solid solutions on an industrial scale, complete automation of the technology of growing Ge–Si single crystals based on the methods of crucibleless zone melting and Czochralski is required. In the case of using these methods, the possibility of achieving high temperature gradients at the crystallization front allows for the growth of perfect single crystals at significantly higher rates of melt crystallization.
It was established that Ge1-xSix solid solutions enriched with Ge have not been sufficiently studied and require fundamental research in connection with promising practical application. A design of a modified setup is proposed that allows for the synthesis of materials with a given composition and uniform distribution of the second component along the length of the ingot at alloying levels of less than 1%.
The thermal units developed during the study allowed for thermal conditions favorable for the formation of the Ge1-xSix solid solution. The results of energy dispersive X-ray microanalysis indicate the incorporation of silicon into the polycrystalline germanium matrix and its distribution along the entire length of the crystal.

About the Authors

V. G. Kosushkin
National Research Centre "Kurchatov Institute"
Russian Federation

1 Kurchatov Sq., Moscow 123182

Victor G. Kosushkin — Dr. Sci. (Eng.), Professor, Leading Researcher



S. I. Supelnyak
National Research Centre "Kurchatov Institute"
Russian Federation

8 Akademicheskaya Str., Kaluga 248033

Stanislav I. Supelnyak — Cand. Sci. (Phys.-Math.), Researcher, Department "Laboratory of Space Materials Science – Kaluga", Kurchatov Complex of Crystallography and Photonics



E. N. Korobeinikova
National Research Centre "Kurchatov Institute"
Russian Federation

8 Akademicheskaya Str., Kaluga 248033

Elena N. Korobeinikova — Researcher, Department "Laboratory of Space Materials Science – Kaluga", Kurchatov Complex of Crystallography and Photonics



V. I. Strelov
National Research Centre "Kurchatov Institute"
Russian Federation

8 Akademicheskaya Str., Kaluga 248033

Vladimir I. Strelov — Dr. Sci. (Phys.-Math.), Chief Researcher, Department "Laboratory of Space Materials Science – Kaluga", Kurchatov Complex of Crystallography and Photonics



References

1. Basu R. A review on single crystals and thin films Si-Ge alloy: growth and applications. Materials Advances. 2022; 3(6): 4489—4513. https://doi.org/10.1039/d2ma 00104g

2. Schilz J., Romanenko V.N. Review bulk growth of silicon-germanium solid solutions. Journal of Materials Science: Materials in Electronics. 1995; 6: 265—279. https://doi.org/10.1007/BF00125881

3. Ajdarov G.Kh. Growing crystals of germanium-silicon solid solutions using a modernized Bridgman method. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2004; (2): 69—71. (In Russ.)

4. Margalit N., Xiang C., Bowers S.M., Bjorlin A., Blum R., Bowers J.E. Perspective on the future of silicon photonics and electronics. Applied Physics Letters. 2021; 118(22): 220501. https://doi.org/10.1063/5.0050117

5. Kulchitskiy N.A., Naumov A.V., Startsev V.V. Photonic and terahertz applications as a next driver of gallium arsenide market. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020; 23(3): 167—176. (In Russ.). https://doi.org/10.17073/1609-3577-2020-3-167-176

6. Erko A., Abrosimov N.V., Alex V. Laterally-graded SiGe Crystals for high resolution synchrotron optics. Crystal Research and Technology. 2002; 37(7): 685—704. https://doi.org/10.1002/1521-4079(200207)37:7<685::AID-CRAT685>3.0.CO;2-Z

7. Haller E. Germanium: from its discovery to sige devices. Materials Science in Semiconductor Processing. 2006; 9(4-5): 408—422. https://doi.org/10.1016/j.mssp.2006.08.063

8. Harame D.L., Meyerson B.S. The early history of IBM’s SiGe mixed signal technology. IEEE Transactions on Electron Devices. 2001; 48(11): 2555—2567. https://doi.org/10.1109/16.960383

9. Basu R., Singh A. High temperature Si-Ge alloy toward thermoelectric applications: A comprehensive review. Materials Today Physics. 2021; 21(32): 100468. https://doi.org/10.1016/j.mtphys.2021.100468

10. Szweda R., O'Connell T., Racanelli M. Experts see SiGe holding its own. III-Vs Review. 2004; 17(6): 32—35. https://doi.org/10.1016/S0961-1290(04)00658-1

11. Single Crystal Semiconductor Silicon-Germanium (SiGe) (LAR-TOPS-320). A suite of methods for efficient manufacturing of SiGe and other semiconductors. URL: https://technology.nasa.gov/patent/LAR-TOPS-320

12. Caño P., Hinojosa M., Nguyen H., Morgan A., Marrón D.F., Garcia I., Johnson A., Rey-Stolle I. Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers. Solar Energy Materials and Solar Cells. 2020; 205(3): 110246. https://doi.org/10.1016/j.solmat.2019.110246

13. Kissinger G., Pizzini S. (eds.). Silicon, germanium, and their alloys: growth, defects, impurities, and nanocrystals. Boca Raton: CRC Press; 2014. 431 p. https://doi.org/10.1201/b17868

14. Glazov V.M., Zemskov V.S. Physicochemical principles of doping semiconductors. Moscow: Nauka; 1967. 371 p. (In Russ.)

15. Yonenaga I. Growth and fundamental properties of Si- Ge bulk crystals. Journal of Grystal Growth. 2005; 275: 91—98. https://doi.org/10.1016/j.jcrysgro.2004.10.071

16. Usami N. Types of silicon—germanium (SiGe) bulk crystal growth methods and their applications silicon–germanium (SiGe) nanostructures production, properties and applications in electronics. In: Woodhead publishing series in electronic and optical materials; 2011. P. 72—82. https://doi.org/10.1533/9780857091420.2.72

17. Yonenaga I., Murakami Y. Segregation during the seeding process in the Czochralski growth of GeSi alloys. Journal of Crystal Growth. 1998; 191(3): 399—404. https://doi.org/10.1016/S0022-0248(98)00166-3

18. Yonenaga I., Nonaka M. Czochralski growth of bulk crystals of Ge1-xSix alloys: II. Si-rich alloys. Journal of Crystal Growth. 1998; 191(3): 393—398. https://doi.org/10.1016/S0022-0248(98)00133-X

19. Seevakan K., Bharanidharan S. Different types of crystal growth methods. International Journal of Pure and Applied Mathematics. 2018; 119(12): 5743—5758.

20. Tatau N. (ed.). Handbook of crystal growth, fundamentals. 2nd ed. In 3 vol. Vol. IA. Thermodynamics and kinetics. Elsevier; 2015.

21. Tatau N. (ed.). Handbook of crystal growth, fundamentals. 2nd ed. In 3 vol. Vol. IB. Transport and stability. Elsevier; 2015.

22. McGinty J., Yazdanpanah N., Price Ch., ter Horst J.H., Sefcik J. Ch. 1. Nucleation and crystal growth in continuous crystallizatio. In: The handbook of continuous crystallization; 2020. P. 1—50. https://doi.org/10.1039/9781788013581-00

23. May A.F., Yan J., McGuire M.A.-J. A practical guide for crystal growth of van der Waals layered materials. Journal of Applied Physics. 2020; 128(5): 051101. https://doi.org/10.1063/5.0015971

24. Tachibana M. Beginner’s guide to flux crystal growth. Springer; 2017. 139 p. https://doi.org/10.1007/978-4-431-56587-1

25. Muehlberg M. General aspects of crystal growth technology. In: Scheel H.J., Capper P. (eds.). Crystal growth technology: from fundamentals and simulation to large scale production. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. Ch. 1. P. 2—26. https://doi.org/10.1002/9783527623440

26. Kanatzidis M.G., Pöttgen R., Jeitschko W. The metal flux: A preparative tool for the exploration of intermetallic compounds. Angewandte Chemie. 2005; 44(43): 6996—7023. https://doi.org/10.1002/anie.200462170

27. Dold P., Barz A., Recha S., Pressel K., Franz M., Benz K.W Growth and characterization of Ge1-xSix (x≤10 at. %) single crystals. Journal of Crystal Growth. 1998; 192(1-2): 25—135. https://doi.org/10.1016/s0022-0248(98)00410-2

28. Azhdarov P., Agaev N. Component distribution in Ge-Si crystals growth from the melt. Inorganic Materials. 1999; 35(8): 763—765.

29. Kyazimova V.K., Zeynalov Z.M., Zakhrabekova Z.M., Azhdarov G.Kh. Distribution of aluminum and indium impurities in crystals of Ge-Si solid solutions grown from the melt. Crystallography Reports. 2006; 51(1): S192—S195. https://doi.org/10.1134/S1063774506070273

30. Zeynalov Z.M., Alekperov A.I., Azhdarov G.Kh. Bridgman growth of GeSi mixed single crystals using a silicon seed crystal. AZƏRBAYCAN MİLLİ ELMLƏR AKADEMİYASININ XƏBƏRLƏRİ Fizika-riyaziyyat və texnika elmləri seriyası, fizika və astronomiya = Izvestiya NAN Azerbaidzhana, seriya fiziko-matematicheskikh i tekhnicheskikh nauk. 2006; 26(2): 51—54. (In Russ.)

31. Armour N., Dost S., Lent B. Effect of free surface and gravity on silicon dissolution in germanium melt. Journal of Crystal Growth. 2007; 299(1): 227—233. https://doi.org/10.1016/j.jcrysgro.2006.11.240

32. Azhdarov G., Kyazimzade R. Growth of homogeneous single crystals of Ge-Si solid solutions using a Ge seed by the modified Bridgman method. Crystallography Reports. 2005; 50(s1): 149—115. https://doi.org/10.1134/1.2133992

33. Dold P., Szofran F.R., Benz K.-W. Thermoelectromagnetic convection in vertical Bridgman grown germanium-silicon. Journal of Crystal Growth. 2006; 291(1): 1—7. https://doi.org/10.1016/j.jcrysgro.2006.02.055

34. Usami N., Kitamura M., Kitamura M., Obara K., Nose Y., Shishido T., Nakajima K. Floating zone growth of Sirich Si-Ge bulk crytal using pre-synthesidod SiGe feed rod with uniform composition. Journal of Grytal Growth. 2005; 284(1-2): 57—64. https://doi.org/10.1016/j.jcrysgro.2005.06.060

35. Ostrogorsky A. Growth of Ga-doped Ge0.98Si0.02 by vertical Bridgman method with a baffle. Journal of Crystal Growth. 2000; 211(1-4): 378—383. https://doi.org/10.1016/S0022-0248(99)00825-8

36. Fisher I.R., Shapiro M.C., Analytis J.G. Principles of crystal growth of intermetallic and oxide compounds from molten solutions. The Philosophical Magazine A Journal of Theoretical Experimental and Applied Physics. 2012: 92(19-21): 2401—2435. https://doi.org/10.1080/14786435.2012.685192

37. Fornari R. (ed.). Electronic materials and crystal growth single crystals of electronic materials growth and properties. In: Woodhead publishing series in electronic and optical materials; 2019. P. 1—3. https://doi.org/10.1016/B978-0-08-102096-8.00001-X

38. Dario A., Sicim H.O., Balikci E. A comparative study on the growth of germanium-silicon single crystals grown by the vertical Bridgman and axial heat processing techniques. Journal of Crystal Growth. 2012; 351(1): 1—8. https://doi.org/10.1016/j.jcrysgro.2012.04.008

39. Friedrich J., Stockmeier L., Müller G. Constitutional supercooling in czochralski growth of heavily doped silicon crystals. Acta Physica Polonica Series A. 2013; 124(2): 219—226. https://doi.org/10.12693/APhysPolA.124.219

40. Scheel H.J. Historical aspects of crystal growth technology. Journal of Crystal Growth. 2000; 211(1): 1—12. https://doi.org/10.1016/S0022-0248(99)00780-0

41. Deal A., Balikci E., Abbaschian R. Enhanced morphological stability in Sb-doped Ge. Metallurgical and Materials Transactions A. 2007; 38(1): 100—115. https://doi.org/10.1007/s11661-006-9013-5

42. Zemskov V.S., Belokurova I.N., Titkov A.N., Shulpina I.L. Solidification of Ge-Si solid solution in near-zero-G conditions. Advances in Space Research. 1981; 1: 129—132.

43. Ivanov L.I., Zemskov V.S., Kubasov V.N., Pimenov V.N., Belokurova I.N, Gurov K.P., Demina E.V., Titkov A.N., Shul’pina I.L. Melting, crystallization and phase formation in zero gravity. Moscow: Nauka; 1979. 199 p. (In Russ.)

44. Helmers J. Schilz G. Bаhr W.A. Kaysser macrosegregation during Bridgman growth of Gel-xSix mixed crystals. Journal of Crystal Growth. 1995; 154(1-2): 60—67.

45. Thurmond C.D. Equilibrium thermo chemistry of solid and liquid alloys of Ge and of Si. solubility of Ge and Si in elements of groups III, IV and V. The Journal of Physical Chemistry. 1953; 57(8): 827—830. https://doi.org/10.1021/j150509a019

46. Sidorov V.S., Zakharov B.G., Serebryakov Yu.A., Pereverzev A.V., Nagaev E.M., Strelov V.I. Аn updated facility for crystal growth with modeling of the conditions of crystallization in microgravity. Instruments and Experimental Techniques. 1999; 42(2): 279—283.

47. Pat. (RU) No 2698830 С1. Kozhemyakin G.N., Supelnyak S.I. Device for crystal growth by vertical Bridgman method. Appl.: 20.03.2019; publ.: 30.08.2019.

48. Sangval K. Travlenie kristallov. Teoriya, eksperiment, primenenie. Moscow: Mir; 1990. 492 p. (Russ. transl. from: Sangwal K. Etching of crystals: theory, experiment and application. Elsevier; 1987. 497 p.).


Supplementary files

Review

For citations:


Kosushkin V.G., Supelnyak S.I., Korobeinikova E.N., Strelov V.I. Directional crystallization of Ge1-xSix solid solutions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):295-305. (In Russ.) https://doi.org/10.17073/1609-3577j.met202407.606

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)