Особенности ап-конверсионной люминесценции концентрационных рядов монокристаллов и наночастиц SrF2-ErF3 при возбуждении на уровень 4I11/2 ионов Er3+
https://doi.org/10.17073/1609-3577j.met202408.607
Аннотация
Выполнен сравнительный анализ спектрально-люминесцентных характеристик ап-конверсионной люминесценции в видимой области спектра концентрационных рядов монокристаллов и наночастиц (1-x) % (мол.) SrF2 x % (мол.) ErF3 (x = 1,6, 3,2, 5,3, 7,4, 11,5, 13,6 и 15,7 %) при возбуждении излучением с длиной волны 0,972 мкм на уровень 4I11/2 ионов Er3+.
Предложены процессы, приводящие к возникновению ап-конверсионной люминесценции в видимом спектральном диапазоне в монокристаллах и наночастицах SrF2—ErF3 при возбуждении излучением с длиной волны 0,972 мкм уровня 4I11/2 ионов Er3+.
Выявлены механизмы взаимодействия ионов Er3+ в монокристаллах и наночастицах SrF2—ErF3, вероятность которых возрастает с увеличением концентрации ионов Er3+.
Об авторах
С. В. ГущинРоссия
ул. Большевистская, д. 68, Саранск, 430005
Гущин Сергей Вячеславович — аспирант, инженер-исследователь
П. А. Рябочкина
Россия
ул. Большевистская, д. 68, Саранск, 430005
Рябочкина Полина Анатольевна — доктор физ.-мат. наук, профессор, зав. кафедрой
А. А. Ляпин
Россия
ул. Большевистская, д. 68, Саранск, 430005
Ляпин Андрей Александрович — канд. физ.-мат. наук, доцент
С. В. Кузнецов
Россия
ул. Вавилова, д. 38, Москва, 119991
Кузнецов Сергей Викторович — канд. хим. наук, ведущий научный сотрудник
В. А. Конюшкин
Россия
ул. Вавилова, д. 38, Москва, 119991
Конюшкин Василий Андреевич — канд. техн. наук, старший научный сотрудник
А. Н. Накладов
Россия
ул. Вавилова, д. 38, Москва, 119991
Накладов Андрей Николаевич — младший научный сотрудник
В. Ю. Пройдакова
Россия
ул. Вавилова, д. 38, Москва, 119991
Пройдакова Вера Юрьевна — научный сотрудник
Список литературы
1. Deng R., Qin F., Chen R., Huang W., Hong M., Liu X. Temporal full-colour tuning through non-steady-state upconversion. Nature Nanotechnology. 2015; 10: 237—242. https://doi.org/10.1038/nnano.2014.317
2. Richards B.S., Hudry D., Busko D., Turshatov A., Howard I.A. Photon upconversion for photovoltaics and photocatalysis: A critical review. Chemical Reviews. 2021; 121(15): 9165—9195. https://doi.org/10.1021/acs.chemrev.1c00034
3. Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. Journal of Nanobiotechnology. 2020; 18(154): 1—22. https://doi.org/10.1186/s12951-020-00713-3
4. Yang Yu., Li W., Mei B., Song J., Yi G., Zhou Z., Liu J. Synthesis and enhanced upconversion luminescence upon two-wavelength excitation of Er3+:CaF2 transparent ceramics. Journal of Luminescence. 2019; 213: 504—509. https://doi.org/10.1016/j.jlumin.2019.05.010
5. Liu Z., Mei B., Song J., Li W. Optical characterizations of hot-pressed erbium-doped calcium fluoride transparent ceramic. Journal of the American Ceramic Society. 2014; 97(8): 2506—2510. https://doi. org/10.1111/jace.12956
6. Liu Z., Jia M., Yi G., Mei B., Jing Q., Liu P. Fabrication and microstructure characterizations of transparent Er:CaF2 composite ceramic. Journal of the American Ceramic Society. 2019; 102(1): 285—293. https://doi.org/10.1111/jace.15902
7. Liu Z., Ji Y., Xu C., Wang Y., Liu Y., Shen Q., Yi G., Yu Y., Mei B., Liu P., Jing Q. Microstructural, spectroscopic and mechanical properties of hot-pressed Er:SrF2 transparent ceramics. Journal of the European Ceramic Society. 2021; 41(9): 4907—4914. https://doi.org/10.1016/j.jeurceramsoc.2021.03.041
8. Yang Y., Zhou Z., Mei B., Zhang Y., Liu X. Fabrication and upconversion luminescence properties of Er:SrF2 transparent ceramics compared with Er:CaF2. Ceramics International. 2021; 47(12): 17139—17146. https://doi. org/10.1016/j.ceramint.2021.03.023
9. Brown M.R., Shand W.A. Infrared quantum counter action in Er-doped fluoride lattices. Physical Review Letters. 1964; 12(13): 367—369. https://doi.org/10.1103/PhysRevLett.12.367
10. Esterowitz L., Noonan J. Two‐step excitation in erbium‐doped cadmium fluoride. Applied Physics Letters. 1965; 7(10): 281—283. https://doi.org/10.1016/j.ceramint.2021.03.023
11. Brown M.R., Shand W.A. Infrared quantum counter action in rare earth doped fluoride lattices. IEEE Journal of Quantum Electronics. 1966; 2(8): 251—253. https://doi.org/10.1109/JQE.1966.1074034
12. Овсянкин В.В., Феофилов П.П. Тройной оптический резонанс в кристаллах BaF2-Er3+. Оптика и спектроскопия. 1966; 20: 526—528.
13. Feofilov P.P., Ovsyankin V.V. Cooperative luminescence of solids. Applied Optics. 1967; 6(11): 1828—1833. https://doi.org/10.1364/AO.6.001828
14. Verber C.M. Infrared-to-visible conversion in CaF2:Er3+ – a sequential pair process. Journal of Applied Physics. 1973; 44(7): 3263—3265. https://doi.org/10.1063/1.1662744
15. Pollack S.A., Chang D.B., Moise N.L. Upconversion‐pumped infrared erbium laser. Journal of Applied Physics. 1986; 60(12): 4077—4086. https://doi.org/10.1063/1.337486
16. Pollack S.A., Chang D.B., Shih I.F., Tzeng R. Upconversion use for viewing and recording infrared images. Applied Optics. 1987; 26(20): 4400—4406. https://doi.org/10.1364/AO.26.004400
17. Pollack S.A., Chang D.B., Shih I.F., Tzeng R. Upconversion use for viewing and recording infrared images. Journal of Applied Physics. 1988; 64(6): 2885—2893. https://doi.org/10.1063/1.341572
18. Jouart J.P., Mary G. Up-conversion from Er3+–Er3+ pairs in CdF2 crystals. Physica Status Solidi (b). 1988; 149(2): 633—639. https://doi.org/10.1002/pssb.2221490226
19. Jouart J.P., Mary G. Upconversion in Er3+-doped fluorite-type crystals pumped by 1.5 μm tunable diode laser. Journal of Luminescence. 1990; 46(1): 39—45. https://doi.org/10.1016/0022-2313(90)90080-U
20. Ivanova S., Pelle F., Tkachuk A., Joubert M.F., Guyot Y., Gapontzev V.P. Upconversion luminescence dynamics of Er-doped fluoride crystals for optical converters. Journal of Luminescence. 2008; 128(5–6): 914—917. https://doi.org/10.1016/j.jlumin.2007.11.031
21. Radzhabov E.A., Shendrik R.Yu. Upconversion of infrared radiation in Er3+-doped alkaline-earth fluorides. Optics and Spectroscopy. 2020; 128(11): 1752—1757. https://doi.org/10.1134/S0030400X20110211
22. Ma W., Qian X., Wang J., Liu J., Fan X., Liu J., Su L., Xu J. Highly efficient dual-wavelength mid-infrared CW laser in diode end-pumped Er:SrF2 single crystals. Scientific Reports. 2016; 6: 36635. https://doi.org/10.1038/srep36635
23. Kumar G.A., Chen C.W., Riman R.E. Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. Applied Physics Letters. 2007; 90(9): 093123. https://doi.org/10.1063/1.2392284
24. Rakov N., Guimarães R.B., Franceschini D.F., Maciel G.S. Er:SrF2 luminescent powders prepared by combustion synthesis. Materials Chemistry and Physics. 2012; 135(2-3): 317—321. https://doi.org/10.1016/j.matchemphys.2012.04.048
25. Ryszczyńska S., Trejgis K., Marciniak L., Grzyb T. Upconverting SrF2:Er3+ nanoparticles for optical temperature sensors. ACS Applied Nano Materials. 2021; 4(10): 10438—10448. https://doi.org/10.1021/acsanm.1c01964
26. Zeng Q., He W., Luan F., Yan Y., Du H., Fu J., Guo D. Insight into the mechanism of intense NIR-to-red upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped SrF2 nanoparticles. New Journal of Chemistry. 2021; 45(14): 6469—6478. https://doi.org/10.1039/D1NJ00497B
27. Zhang X., Chen Z., Qiu J. Mechanistic investigation of upconversion luminescence in Er3+-doped BaCl2, BaF2 and NaYF4 phosphors. Materials Chemistry and Physics. 2015; 162: 76—81. https://doi.org/10.1016/j.matchemphys.2015.05.003
28. Lyapin A.A., Gushchin S.V., Kuznetsov S.V., Ryabochkina P.A., Ermakov A.S., Proydakova V.Yu., Voronov V.V., Fedorov P.P., Artemov S.A., Yapryntsev A.D., Ivanov V.K. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018; 8(7): 1863—1869. https://doi.org/10.1364/OME.8.001863
29. Lyapin A.A., Ryabochkina P.A., Gushchin S.V., Zharkov M.N., Ermakov A.S., Kyashkin V.M., Prytkov S.V., Atanova A.V. Characteristics of upconversion luminescence of CaF2:Er powders excited by 1.5-µm laser radiation. Optics and Spectroscopy. 2020; 128(2): 200—206. https://doi.org/10.1134/S0030400X20020137
30. Lyapin A.A., Gushchin S.V., Ermakov A.S., Kuznetsov S.V., Ryabochkina P.A., Proydakova V.Yu., Voronov V.V., Fedorov P.P., Chernov M.V. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors. Chinese Optics Letters. 2018; 16(9): 091901. https://doi.org/10.3788/COL201816.091901
31. Fedorov P.P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russian Journal of Inorganic Chemistry. 2000; 45(3): 268—291.
32. Осико В.В. Лазерные материалы. Избранные труды. М.: Наука; 2002. 498 с.
33. Прохоров А.М., Осико В.В. Исследование структуры кристаллов с примесью редкоземельных элементов спектроскопическими методами. В кн.: Белов Н.В., Вайнштейн Б.К. и др. Проблемы современной кристаллографии. М.: Наука; 1975. C. 280—301.
34. Greis O., Haschke J.M. Rare earth fluorides. Handbook on the Physics and Chemistry of Rare Earths. 1982; 5: 387—460. https://doi.org/10.1016/S0168-1273(82)05008-9
35. Попов П.А., Федоров П.П. Теплопроводность фторидных оптических материалов. Брянск: группа компаний «Десяточка»; 2012. 210 с.
36. Кузнецов С.В., Осико В.В., Ткаченко Е.А., Федоров П.П. Неорганические нанофториды и нанокомпозиты на их основе. Успехи химии. 2006; 75(12): 1193—1211.
37. Khosrofian J.M., Garetz B.A. Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Applied Optics. 1983; 22(21): 3406—3410. https://doi.org/10.1364/AO.22.003406
38. Fedorov P.P., Sobolev B.P. Concentration dependence of unit-cell parameters of phases M1-xRxF2+x with the fluorite structure. Soviet Physics Crystallography. 1992; 37(5): 651—656.
Дополнительные файлы
Рецензия
Для цитирования:
Гущин С.В., Рябочкина П.А., Ляпин А.А., Кузнецов С.В., Конюшкин В.А., Накладов А.Н., Пройдакова В.Ю. Особенности ап-конверсионной люминесценции концентрационных рядов монокристаллов и наночастиц SrF2-ErF3 при возбуждении на уровень 4I11/2 ионов Er3+. Известия высших учебных заведений. Материалы электронной техники. 2024;27(4):348-357. https://doi.org/10.17073/1609-3577j.met202408.607
For citation:
Gushchin S.V., Ryabochkina P.A., Lyapin A.A., Kuznetsov S.V., Konyushkin V.A., Nakladov A.N., Proydakova V.Yu. Features of up-conversion luminescence in concentration series of SrF2–ErF3 single crystals and nanoparticles under excitation at the 4I11/2 level of Er3+ ions. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):348-357. (In Russ.) https://doi.org/10.17073/1609-3577j.met202408.607