SELECTIVITY OF SPIN STATES IN PLANAR QUANTUM RINGS IN A STRONG MAGNETIC FIELD
Abstract
The electronic states of flat thin quantum rings of rectangular cross section whose thickness h, inner radius Rin and outer Rex are related by the relations ; in are considered; hereinafter we will call them “quantum shims”. It is found that this type of narrow-gap heterostructures in a wide-gap matrix can become basic elements for spintronic systems. Their spectrum in an external magnetic field can be reduced to a single stable level, all quantum numbers of which (spin including) are controlled by the external field. This is proved both by numerical calculations and approximate analytical estimates, clarifying the mechanism of formation of such a state. Because of the conservation of an undamped quantum current and the associated magnetic moment, these states are more stable than in ideal quantum dots with a similar spectrum. The variants of changing the spin state of the electron localized on the puck by a longitudinal magnetic field are considered
About the Authors
Arkady Mikhailovich MandelRussian Federation
Associate Professor, Department of Physics
Vadim Borisovich Oshurko
Russian Federation
Elena Evgenievna Karpova
Russian Federation
Associate Professor, Department of Physics
Kirill Georgievich Solomakho
Russian Federation
Senior Lecturer, Department of Physics
References
1. Viefers S., Koskinen P., Singha.Deo P., Manninen M. Quantum rings for beginners: energy spectra and persistent currents. //Physica E. 2004. Vol. 21, No.1, pp. 1-35.
2. DOI: 10.1016/j.physe.2003.08.076
3. Мanninen M., Viefers S. and Reimann S.M. Quantum rings for beginners II: Bosons versus fermions. //Physica E. 2012. Vol. 46, pp. 119-132.
4. DOI: 10.1016/j.physe.2012.09.013
5. Csaba Daday. Coulomb and Spin-Orbit Interaction Effects in a Mesoscopic Ring. /University of Iceland. Department of Physics. Reykjavic. August 2011.
6. URL: https://cyberleninka.ru/article/n/coulomb-effects-on-the-spin-polarization-of-quantum-rings (accessed 20.10.2024)
7. Baran A.V., Kudryashov V.V. Spin-Orbit Interactions in Semiconductor Quantum Ring in the Presence of Magnetic Field. //International Journal of Nanoscience. 2019. Vol. 18, Nos. 3 & 4 1940016 (4 pages)
8. DOI: 10.1142/S0219581X19400167
9. Kammermeier M., Seith A., Wenk P. and Schliemann J. Persistent spin textures and currents in wurtzite nanowire-based quantum structures. 2020. // Phys. Rev. B. 2020. Vol. 101, p.195418
10. DOI: 10.1103/PhysRevB.101.195418
11. Li B., Magnus W. and Peeters F.M. Tunable exciton Aharonov-Bohm effect oin a quantum ring. //Journal of Physics: Conferens Series 2010. Vol. 210, In: 11th International Conference on Optics of Excitons in Confined Systems (OECS11) 7-11 September 2009, Madrid, Spain
12. URL: https://iopscience.iop.org/article/10.1088/1742-6596/210/1/012030/meta (accessed 20.10.2024)
13. Lia J.M. and Tamborenea P.I.. Narrow quantum rings with general Rashba and Dresselhaus spin-orbit interaction. //Physica E. 2020. Vol. 126, pp. 114419-114431.
14. DOI: 10.1016/j.physe.2020.114419
15. Kozin V. K., Iorsh I. V., Kibis O. V. and Shelykh I. A. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator. //Phys. Rev. B 2018. Vol. 97, pp. 035416-035423.
16. DOI: 10.1103/PhysRevB.97.035416
17. De Lira F. A. G., Pereira L. F. C., Silva E.O. Study on the effects of anisotropic effective mass on electronic properties, magnetization and persistent current in semiconductor quantum ring with conical geometry. // Physica E. 2021. Vol. 132, 114760
18. DOI: 10.1016/j.physe.2021.114760
19. Sullivan H.T., Cole J.H. A link between shape dependent lifetimes and thermal escape in quantum dots and rings. // Physical Review Research. 2024. Vol. 6, p. 013086
20. DOI: 10.1103/PhysRevResearch.6.013086
21. Panneerselvam K., Muralidharan B., Giant excitonic magneto-optical Faraday rotation in single semimagnetic CdTe/Cd1-xMnxTe quantum ring. // Physica E. 2024. Vol.157, p. 115876
22. DOI: 10.1016/j.physe.2023.115876
23. Rubo Y.G., Spin-orbital effect on polariton state in traps // Phys. Rev. B, 2022. Vol.106, p.235306
24. DOI: 10.1103/PhysRevB.106.235306
25. Planelles J., Movilla J.L., Climente J.I. Topological magnetoelectric effect in semiconductor nanostructures: Quantum wells, wires, dots, and rings. // Phys. Rev. Research. 2023. Vol. 5, p. 023119
26. DOI: https://doi.org/10.1103/PhysRevResearch.5.023119
27. Blackman N., Genov D.A. Temperature dependent diamagnetic-paramagnetic transitions in metal/semiconductor quantum rings. // Phys. Rev. B. 2020. Vol. 102, p. 245429
28. DOI: 10.1103/PhysRevB.102.245429
29. Gioia L., Zülicke U., Governale M., Winkler R. Dirac electrons in quantum rings. // Phys. Rev. B, 2018, Vol. 97, p. 205421
30. DOI: 10.1103/PhysRevB.97.205421
31. Chakraborty T., Manaselyan A., Barseghyan M. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring. // J. Phys.: Condens. Matter. 2016. Vol. 29, p. 075605
32. DOI: 10.1088/1361-648X/aa5168
33. Ledentsov V.M., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg D. //FTP 32, c. 385 (1998).
34. https://journals.ioffe.ru/articles/viewPDF/34295
35. А.М. Mandel, V.B. Oshurko and E.E. Karpova. Renormalization of the Lande Factor and Effective Mass in Small Spherical Quantum Dots. //Journal of Communications Technology and Electronics. 2019. 64 (10), pp.1127-1134.
36. DOI: 10.1134/S1064226919100085
37. Rodionov V.N., Kravtsova G.A., Mandel' A.M. On the influence of strong electric and magnetic fields on spatial dispersion and anisotropy of optical properties of semiconductor // JETP Letters. 2003. T.78. № 4. S.253-257.
38. A.I. Baz', Ya.B. Zel'dovich, A.M. Perelomov. Scattering, reactions and decays in non-relativistic quantum mechanics. M.: Nauka. 1966.
39. Rodionov V.N., Kravtsova G.A., Mandel' A.M. Ionization from a short-range potential under the action of electromagnetic fields of complex configuration. // JETP Letters. 2002. T.75. № 8. S. 435-439.
40. Rodionov V.N., Kravtsova G.A., Mandel' A.M. Lack of stabilization of quasi-stationary states of the electron in a strong magnetic field and //Dokl. AN SSSR. 2002. T.386. V.6, S.753-756.
41. А.М. Mandel, V.B. Oshurko and S.M. Pershin. A Thin Semiconductor Quantum Ring as an Analog of a Magnetically Controlled Bohr Atom. // Doklady Physics. 2021. 66 (9), pp.253-256.
42. DOI: 10.1134/S1028335821090020
43. Vurgaftman I., Meyer J.R., Ram-Mohan L.R. Band parameters for III-V compound semiconductors and their allous // J. Appl. Phys. 2001. V. 89. P. 5815
44. DOI: 10.1063/1.1368156 Corpus ID: 121056857
45. Алешкин В.Я., Гавриленко В.И., Иконников А.В. и др. Обменное усиление g-фактора в гетероструктурах // ФТП. 2008. Т. 42. № 7. С. 846-851.
Supplementary files
Review
For citations:
Mandel A.M., Oshurko V.B., Karpova E.E., Solomakho K.G. SELECTIVITY OF SPIN STATES IN PLANAR QUANTUM RINGS IN A STRONG MAGNETIC FIELD. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(2).