Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

SELECTIVITY OF SPIN STATES IN PLANAR QUANTUM RINGS IN A STRONG MAGNETIC FIELD

Abstract

The electronic states of flat thin quantum rings of rectangular cross section whose thickness h, inner radius Rin and outer Rex are related by the relations ; in are considered; hereinafter we will call them “quantum shims”. It is found that this type of narrow-gap heterostructures in a wide-gap matrix can become basic elements for spintronic systems. Their spectrum in an external magnetic field can be reduced to a single stable level, all quantum numbers of which (spin including) are controlled by the external field. This is proved both by numerical calculations and approximate analytical estimates, clarifying the mechanism of formation of such a state. Because of the conservation of an undamped quantum current and the associated magnetic moment, these states are more stable than in ideal quantum dots with a similar spectrum. The variants of changing the spin state of the electron localized on the puck by a longitudinal magnetic field are considered

About the Authors

Arkady Mikhailovich Mandel
Moscow State Technological University “STANKIN”
Russian Federation

Associate Professor, Department of Physics



Vadim Borisovich Oshurko
Moscow State Technological University “STANKIN”
Russian Federation


Elena Evgenievna Karpova
Moscow State Technological University “STANKIN”
Russian Federation

Associate Professor, Department of Physics



Kirill Georgievich Solomakho
Moscow State Technological University “STANKIN”
Russian Federation

Senior Lecturer, Department of Physics



References

1. Viefers S., Koskinen P., Singha.Deo P., Manninen M. Quantum rings for beginners: energy spectra and persistent currents. //Physica E. 2004. Vol. 21, No.1, pp. 1-35.

2. DOI: 10.1016/j.physe.2003.08.076

3. Мanninen M., Viefers S. and Reimann S.M. Quantum rings for beginners II: Bosons versus fermions. //Physica E. 2012. Vol. 46, pp. 119-132.

4. DOI: 10.1016/j.physe.2012.09.013

5. Csaba Daday. Coulomb and Spin-Orbit Interaction Effects in a Mesoscopic Ring. /University of Iceland. Department of Physics. Reykjavic. August 2011.

6. URL: https://cyberleninka.ru/article/n/coulomb-effects-on-the-spin-polarization-of-quantum-rings (accessed 20.10.2024)

7. Baran A.V., Kudryashov V.V. Spin-Orbit Interactions in Semiconductor Quantum Ring in the Presence of Magnetic Field. //International Journal of Nanoscience. 2019. Vol. 18, Nos. 3 & 4 1940016 (4 pages)

8. DOI: 10.1142/S0219581X19400167

9. Kammermeier M., Seith A., Wenk P. and Schliemann J. Persistent spin textures and currents in wurtzite nanowire-based quantum structures. 2020. // Phys. Rev. B. 2020. Vol. 101, p.195418

10. DOI: 10.1103/PhysRevB.101.195418

11. Li B., Magnus W. and Peeters F.M. Tunable exciton Aharonov-Bohm effect oin a quantum ring. //Journal of Physics: Conferens Series 2010. Vol. 210, In: 11th International Conference on Optics of Excitons in Confined Systems (OECS11) 7-11 September 2009, Madrid, Spain

12. URL: https://iopscience.iop.org/article/10.1088/1742-6596/210/1/012030/meta (accessed 20.10.2024)

13. Lia J.M. and Tamborenea P.I.. Narrow quantum rings with general Rashba and Dresselhaus spin-orbit interaction. //Physica E. 2020. Vol. 126, pp. 114419-114431.

14. DOI: 10.1016/j.physe.2020.114419

15. Kozin V. K., Iorsh I. V., Kibis O. V. and Shelykh I. A. Periodic array of quantum rings strongly coupled to circularly polarized light as a topological insulator. //Phys. Rev. B 2018. Vol. 97, pp. 035416-035423.

16. DOI: 10.1103/PhysRevB.97.035416

17. De Lira F. A. G., Pereira L. F. C., Silva E.O. Study on the effects of anisotropic effective mass on electronic properties, magnetization and persistent current in semiconductor quantum ring with conical geometry. // Physica E. 2021. Vol. 132, 114760

18. DOI: 10.1016/j.physe.2021.114760

19. Sullivan H.T., Cole J.H. A link between shape dependent lifetimes and thermal escape in quantum dots and rings. // Physical Review Research. 2024. Vol. 6, p. 013086

20. DOI: 10.1103/PhysRevResearch.6.013086

21. Panneerselvam K., Muralidharan B., Giant excitonic magneto-optical Faraday rotation in single semimagnetic CdTe/Cd1-xMnxTe quantum ring. // Physica E. 2024. Vol.157, p. 115876

22. DOI: 10.1016/j.physe.2023.115876

23. Rubo Y.G., Spin-orbital effect on polariton state in traps // Phys. Rev. B, 2022. Vol.106, p.235306

24. DOI: 10.1103/PhysRevB.106.235306

25. Planelles J., Movilla J.L., Climente J.I. Topological magnetoelectric effect in semiconductor nanostructures: Quantum wells, wires, dots, and rings. // Phys. Rev. Research. 2023. Vol. 5, p. 023119

26. DOI: https://doi.org/10.1103/PhysRevResearch.5.023119

27. Blackman N., Genov D.A. Temperature dependent diamagnetic-paramagnetic transitions in metal/semiconductor quantum rings. // Phys. Rev. B. 2020. Vol. 102, p. 245429

28. DOI: 10.1103/PhysRevB.102.245429

29. Gioia L., Zülicke U., Governale M., Winkler R. Dirac electrons in quantum rings. // Phys. Rev. B, 2018, Vol. 97, p. 205421

30. DOI: 10.1103/PhysRevB.97.205421

31. Chakraborty T., Manaselyan A., Barseghyan M. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring. // J. Phys.: Condens. Matter. 2016. Vol. 29, p. 075605

32. DOI: 10.1088/1361-648X/aa5168

33. Ledentsov V.M., Ustinov V.M., Shchukin V.A., Kop'ev P.S., Alferov Zh.I., Bimberg D. //FTP 32, c. 385 (1998).

34. https://journals.ioffe.ru/articles/viewPDF/34295

35. А.М. Mandel, V.B. Oshurko and E.E. Karpova. Renormalization of the Lande Factor and Effective Mass in Small Spherical Quantum Dots. //Journal of Communications Technology and Electronics. 2019. 64 (10), pp.1127-1134.

36. DOI: 10.1134/S1064226919100085

37. Rodionov V.N., Kravtsova G.A., Mandel' A.M. On the influence of strong electric and magnetic fields on spatial dispersion and anisotropy of optical properties of semiconductor // JETP Letters. 2003. T.78. № 4. S.253-257.

38. A.I. Baz', Ya.B. Zel'dovich, A.M. Perelomov. Scattering, reactions and decays in non-relativistic quantum mechanics. M.: Nauka. 1966.

39. Rodionov V.N., Kravtsova G.A., Mandel' A.M. Ionization from a short-range potential under the action of electromagnetic fields of complex configuration. // JETP Letters. 2002. T.75. № 8. S. 435-439.

40. Rodionov V.N., Kravtsova G.A., Mandel' A.M. Lack of stabilization of quasi-stationary states of the electron in a strong magnetic field and //Dokl. AN SSSR. 2002. T.386. V.6, S.753-756.

41. А.М. Mandel, V.B. Oshurko and S.M. Pershin. A Thin Semiconductor Quantum Ring as an Analog of a Magnetically Controlled Bohr Atom. // Doklady Physics. 2021. 66 (9), pp.253-256.

42. DOI: 10.1134/S1028335821090020

43. Vurgaftman I., Meyer J.R., Ram-Mohan L.R. Band parameters for III-V compound semiconductors and their allous // J. Appl. Phys. 2001. V. 89. P. 5815

44. DOI: 10.1063/1.1368156 Corpus ID: 121056857

45. Алешкин В.Я., Гавриленко В.И., Иконников А.В. и др. Обменное усиление g-фактора в гетероструктурах // ФТП. 2008. Т. 42. № 7. С. 846-851.


Supplementary files

Review

For citations:


Mandel A.M., Oshurko V.B., Karpova E.E., Solomakho K.G. SELECTIVITY OF SPIN STATES IN PLANAR QUANTUM RINGS IN A STRONG MAGNETIC FIELD. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(2).

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)