Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Simulation of Si-based solar cell radiation resistance

https://doi.org/10.17073/1609-3577j.met202412.628

Abstract

In this work, we developed an I-V curve model of p-type c-Si-based solar cell (SC) with a passivated emitter at the rear contact after irradiation with 1 MeV electrons. The I–V curve is one of the key output characteristics of SCs and solar panels (SPs), from which all the main electrical parameters can be obtained and the performance of the developed design can be evaluated. Radiation is high-energy particles, which, as a rule, cause defects in the crystal lattice, increasing the internal resistance of the SCs design. The resulting defects create energy levels in the forbidden zone of the semiconductor material that act as capture (traps) or recombination centers. An increase in the concentration of traps leads to a decrease in the minority carriers’ diffusion length, which in turn reduces short-circuit current (Isc) and open-circuit voltage (Uoc), significantly affecting the efficiency and power of the SC. Modeling of the degradation curves was based on the assumption that the value of minority carriers’ diffusion lengths in the base and emitter of the SC are most affected by ionizing radiation, when exposed to electrons with energy of 1 MeV in the fluence range up to 1015 cm-2, which is equivalent in magnitude to the radiation operating conditions of a solar panel (SP). The degradation curves of the main electrical parameters of the SC, including Uoc, series (Rseries) and shunt resistances (Rshunt), were obtained. On the basis of the calculated degradation curves of Isc and Uoc, as well as the physical basis of the SCs operation, it is revealed that Uoc changes more significantly, while Isc practically does not change due to the small degradation of the minority carriers’ diffusion length in the emitter. The analysis of experimentally obtained I–V curves has shown that the degradation of its maximum power point (24.8%) is affected by the decrease of Rshunt and increase of Rseries. Approbation of the I–V curve model based on experimental irradiation of Si-based SCs by electrons with the energy of 1 MeV showed an inaccuracy of no more than 5.3%. Thus, when assessing the radiation resistance of SP, partial replacement of full-scale radiation tests of SCs by modeling will allow to speed up and reduce the cost of work.

About the Authors

A. A. Feklistova
JSC “Research-Production Enterprise “KVANT”; National University of Science and Technology “MISIS”
Russian Federation

16 3rd Mytishinskaya Str., Moscow 129626;

4-1 Leninsky Ave., Moscow 119049

Aleksandra A. Feklistova — Engineer-Technologist (1); Student (2)

 



M. V. Ryabceva
JSC “Research-Production Enterprise “KVANT”
Russian Federation

16 3rd Mytishinskaya Str., Moscow 129626

Mariya V. Ryabceva — Cand. Sci. (Phys.–Math.), Leading Researcher



E. S. Chuyanova
JSC “Research-Production Enterprise “KVANT”; National University of Science and Technology “MISIS”
Russian Federation

16 3rd Mytishinskaya Str., Moscow 129626;

4-1 Leninsky Ave., Moscow 119049

Elena S. Chuyanova — Researcher (1); Postgraduate Student (2)

 



N. T. Vagapova
National University of Science and Technology “MISIS”
Russian Federation

4-1 Leninsky Ave., Moscow 119049

Nargiza T. Vagapova — Cand. Sci. (Chem.), Associate Professor



References

1. Flood D., Brandhorst H. Current topics in photovoltaics . London: Academic Press; 1987. Vol. 2. 143 p.

2. Gansvind I.N. Small spacecraft — new direction in space activities. International Research Journal. 2018; (12-2(78)): 84—91. (In Russ.). https://doi.org/10.23670/IRJ.2018.78.12.053

3. Doroshin A.V. Analysis of market needs and interests of private commercial organizations engaged in product development and provision of services in the field of space exploration and related technologies. (In Russ.). Available at: https://kosmos.ssau.ru/files/Kosmos_SSAU_marketrepot_2022.pdf. (accessed on 25.11.2024).

4. Astashkin A.A., Karelin A.V., Komissarova I.N., Kuzmin Yu.A., Shuvalov V.A., Yakovlev A.A. Satellites of operational meteorology constellations overview. Electromechanical matters. VNIIEM studies. 2021; 181(2): 24—55. (In Russ.)

5. Luque A., Hegedus S. (eds.). Handbook of photovoltaic science and engineering. John Wiley & Sons; 2011. 1168 p.

6. Yamaguchi M. Radiation-resistant solar cells for space use. Solar Energy Materials and Solar Cells. 2001; 68(1): 31—53. https://doi.org/10.1016/S0927-0248(00)00344-5

7. Tada H.Y., Carter J.R., Anspaugh B.E., Downing R.G. Solar cell radiation handbook. Pasadena, California: National Aeronautics and Space Administration, Jet Propulsion Laboratory, Institute of Technology; 1982. 403 p.

8. Messenger S.R., Jackson E.M., Warner J.H., Walters R.J. SCREAM: A new code for solar cell degradation prediction using the displacement damage dose approach. In: 2010 35th IEEE Photovoltaic special. conf. Honolulu, HI, USA; 2010. P. 001106—001111. https://doi.org/10.1109/pvsc.2010.5614713

9. Ryabtseva M.V., Chuyanova E.S., Badurin I.V., Loginova E.S., Vagapova N.T., Petrov A.S., Sergeev O.S., Tapero K.I., Arzamastseva D.M. The radiation resistance study of modern Si photoelectric converters. Voprosy atomnoi nauki i tekhniki. Seriya: Fizika radiatsionnogo vozdeistviya na radioelektronnuyu apparaturu. 2023; (4); 24—30. (In Russ.)

10. Klinovitskaya I.A., Plotnikov S.V., Lay P.M.L. Modification of a standard Al-BSF solar cell line into PERC using PECVD. Zhurnal tekhnicheskoy fiziki = Technical Physics. 2022; 92(4): 588—595. https://doi.org/10.21883/TP.2022.04.53606.224-21

11. Mehta H.K., Warke H., Kukadiya K., Panchal A.K. Accurate expressions for single-diode-model solar cell parameterization. IEEE Journal of Photovoltaics. 2019; 9(3): 803—810. https://doi.org/10.1109/JPHOTOV.2019.2896264

12. Shannan N.M.A.A., Yahaya N.Z., Singh B. Single-diode model and two-diode model of PV modules: A comparison. In: 2013 IEEE inter. conf. control system, computing and engineering. Penang, Malaysia; 2013. P. 210—214. https://doi.org/10.1109/ICCSCE.2013.6719960

13. Parkhomenko Yu. N., Polisan A.A. Physics and technology of photonics devices. Moscow: Izdatel'skii dom «MISiS»; 2013. 142 p. (In Russ.)

14. King D.L., Boyson W.E., Kratochvil J.A. Photovoltaic array performance model. Draft Sandia National Laboratories; 2003. 39 p.

15. Koffi A.H., Armah E.A., Ampomah-Benefo K., Dodoo-Arhin D. A step by step analytical solution to the single diode model of a solar cell. NUST Journal of Engineering Sciences. 2022; 15(2): 60—64. https://doi.org/10.24949/njes.v15i2.728

16. Koffi H.A., Yankson A.A., Hughes A.F., Ampomah-Benefo K., Amuzu J.K.A. Determination of the series resistance of a solar cell through its maximum power point. African Journal of Science, Technology, Innovation and Development. 2020; 12(6): 699—702. https://doi.org/10.1080/20421338.2020.1731073

17. Tada H., Carter J.R. Solar cell radiation handbook. Springfield; 1982. 300 p.

18. Emelyanov V.M., Kalyuzhnyi N.A., Mintairov S.A., Shvarts M.Z., Lantratov V.M. GaInP/GaInAs/Ge multijunction solar cells with Bragg reflectors. Fizika i tekhnika poluprovodnikov = Semiconductors. 2010; 44(12): 1649—1654. (In Russ.)

19. Tajima M., Warashina M., Hisamatsu T., Matsuda S. Photoluminescence due to boron-related defect in solar cell silicon irradiated with 1 MeV electrons. IEEE Transactions on Nuclear Science. 2001; 48(6): 2127—2130. https://doi.org/10.1109/23.983183

20. Yamaguchi M., Khan A., Taylor S.J., Imaizumi M., Hisamatsu T., Matsuda S. A detailed model to improve the radiation-resistance of Si space solar cells. IEEE Transactions on Electron Devices. 1999; 46(10): 2133—2138. https://doi.org/10.1109/16.792008

21. Rehman A., Lee S.H., Lee S.H. Silicon space solar cells: progression and radiation-resistance analysis. Journal – Korean Physical Society. 2016; 68(4): 593—598. https://doi.org/10.3938/jkps.68.593

22. Ladygin E.A. Radiation technology of solid-state electronic devices. Moscow: TsNII “Elektronika”; 1976. 112 p. (In Russ.)

23. Cappelletti M.A., Casas G.A., Cedola A.P., Blancá E.P. Theoretical study of the maximum power point of n-type and p-type crystalline silicon space solar cells. Semiconductor Science and Technology. 2013; 28(4): 045010. https://doi.org/10.1088/0268-1242/28/4/045010

24. Evdokimov V.M. Determination of parameters of minority carriers in semiconductor photocells using the spectral sensitivity curve. Geliotekhnika. 1972; (3): 32—38. (In Russ.)

25. Emelyanov V.M., Mintairov S.A., Kalyuzhnyi N.A., Lantratov V.M. The external quantum yield of photoresponce of tandem solar cells. St. Petersburg Polytechnic University Journal: Physics and Mathematics. 2009; 2(77): 14—23. (In Russ.)

26. Vasil'ev A.M., Landsman A.P. Semiconductor photo converters. Moscow: Sovetskoe radio; 1971. 248 p. (In Russ.)

27. Li S., Huang L., Ye J., Hong Y., Wang Y., Gao H., Cui Q. Study on radiation damage of silicon solar cell electrical parameters by nanosecond pulse laser. Electronics. 2024; 13(9): 1795. https://doi.org/10.3390/electronics13091795


Review

For citations:


Feklistova A.A., Ryabceva M.V., Chuyanova E.S., Vagapova N.T. Simulation of Si-based solar cell radiation resistance. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(1):5-14. (In Russ.) https://doi.org/10.17073/1609-3577j.met202412.628

Views: 167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)