Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Электротранспортные свойства углеродной наноструктуры, полученной методом PECVD

Abstract

Изучены дефектные графитовые слои, полученные на начальных стадиях формирования вертикального графена методом химического осаждения из газовой фазы усиленной микроволновой плазмой (PECVD) толщиной ≈ 20 нм и ≈ 35 нм. Температурные зависимости проводимости образцов, измеренные в интервале от 2 К до 300 К, демонстрируют полупроводниковый характер. Установлено, что в образце толщиной 20 нм механизм электротранспорта обусловлен комбинацией вклада описываемого теорией двухмерных (2D) квантовых поправок (КП) к проводимости Друде в условиях слабой локализации, доминирующих во всем температурном интервале, и обычного зонного вклада с активационным механизмом составляющего ≈8% при комнатной температуре. При увеличении толщины до 35 нм наблюдается дополнительный механизм проводимости, описываемый теорией трехмерных квантовых поправок с вкладом≈ 1,6 % при Т = 300К. Показано, что активационный механизм, несмотря на свой малый вклад в проводимость, оказывает существенное влияние на температурное изменение проводимости при Т > 200 К, сопоставимое с величиной вклада механизма 2D КП.

About the Authors

А. Харченко
Научно-исследовательское учреждение «Институт ядерных проблем» Белорусского государственного университета (НИИ ЯП БГУ)
Belarus


А. Федотов
Научно-исследовательское учреждение «Институт ядерных проблем» Белорусского государственного университета (НИИ ЯП БГУ)
Belarus


Ю. Федотова
Научно-исследовательское учреждение «Институт ядерных проблем» Белорусского государственного университета (НИИ ЯП БГУ)
Belarus


References

1. Yaguchi H., Singleton J. Destruction of the field- induced density-wave state in graphite by large magnetic fields. Physical review letters. 1998; 81: 5193. https://doi.org/10.1103/PhysRevLett.81.5193

2. Zhang X., Xue Q., Zhu D. Positive and negative linear magnetoresistance of graphite. Physics Letters A. 2004; 320: 471—477. https://doi.org/10.1016/j.physleta.2003.11.050

3. Hishiyama Y., Irumano H., Kaburagi Y., Soneda Y. Structure, Raman scattering, and transport properties of boron-doped graphite. Physical Review B. 2001; 63: 245406. https://doi.org/10.1103/PhysRevB.63.245406

4. Kaburagi Y., Hishiyama Y. Electronic properties of kish graphite crystals with low values of residual resistivity ratio. Carbon. 1998; 36(11): 1671—1676. https://doi.org/10.1016/S0008-6223(98)00163-8

5. Romanenko A., Anikeeva O., Okotrub A., Bulusheva L., Kuznetsov V., Butenko Y. V., Chuvilin A., Dong C., Ni Y. The temperature dependence of the electrical resistivity and the negative magnetoresistance of carbon nanoparticles. Physics of the Solid State. 2002; 44: 487—489. https://doi.org/10.1134/1.1462682

6. Kaburagi Y., Hishiyama Y. Linear dependence of transverse magnetoresistance on magnetic field in kish graphite. Carbon. 1995; 33(10): 1505—1506. https://doi.org/10.1016/0008-6223(95)96989-L

7. Kaburagi Y., Hishiyama Y. Anomalous hall coefficient in kish graphite. Carbon. 1995; 33(9): 1349—1350. https://doi.org/10.1016/0008-6223(95)93956-M

8. Fujita S. Negative magnetoresistance in carbons and diffuse scattering at crystallite boundaries. Carbon. 1968; 6(5): 746—748. https://doi.org/10.1016/0008-6223(68)90022-5

9. Andrade E., López-Ur´ıas F., Naumis G. G. Topological origin of flat bands as pseudo-Landau levels in uniaxial strained graphene nanoribbons and induced magnetic ordering due to electron-electron interactions. Physical Review B. 2023; 107; 235143. https://doi.org/10.1103/PhysRevB.107.235143

10. Zhao C., Huang Q., Valenta L., Eimre K., Yang L., Yakutovich A. V., Xu W., Ma J., Feng X., Jur´ıˇ cek M., et al. Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation. Physical review letters. 2024; 132: 046201. https://doi.org/10.1103/PhysRevLett.132.046201

11. Rehman Sagar R. Ur, Zhang X., Wang J., Xiong C. Negative magnetoresistance in undoped semiconducting amorphous carbon films. Journal of Applied Physics. 2014; 115: 123708. https://doi.org/10.1063/1.4869780

12. Yosida Y. Oguro I. Variable range hopping conduction in multiwalled carbon nanotubes. Journal of Applied Physics. 1998; 83, 4985—4987. https://doi.org/10.1063/1.367302

13. Hishiyama Y. Negative magnetoresistance in soft carbons and graphite. Carbon. 1970; 8(3): 259—269. https://doi.org/10.1016/0008-6223(70)90067-9

14. Vora P., Gopu P., Rosario-Canales M., P´ erez C., Gogotsi Y., Santiago-Avil´es J., Kikkawa J. Correlating magnetotransport and diamagnetism of sp2-bonded carbon networks through the metal-insulator transition. Physical Review B. 2011: 84: 155114. https://doi.org/10.1103/PhysRevB.84.155114

15. Prasad V., Subramanyam S. Magnetotransport in the amorphous carbon films prepared from succinic anhydride, Physica B: Condensed Matter. 2005; 369(1-4); 168—176. https://doi.org/10.1016/j.physb.2005.08.009

16. Wan C., Zhang X., Vanacken J., Gao X., Zhang X., Wu L., Tan X., Lin H., Moshchalkov V.V., Yuan J. Electro-and magneto-transport properties of amorphous carbon films doped with iron. Diamond and related materials. 2011; 20(1): 26—30. https://doi.org/10.1016/j.diamond.2010.11.001

17. Zhou Y.-B., Han B.-H., Liao Z.-M., Wu H.-C., Yu D.- P. From positive to negative magnetoresistance in graphene with increasing disorder. Applied Physics Letters. 2011; 98(22): 222502. https://doi.org/10.1063/1.3595681

18. Lee P. A. Ramakrishnan T. Disordered electronic systems. Reviews of modern physics. 1985; 57: 287. https://doi.org/10.1103/RevModPhys.57.287

19. Al'tshuler B. L. , Aronov A. G. , Khmel'nitskii D. E. Negative magnetoresistance in semiconductors in the hopping conduction region, Soviet Journal of Experimental and Theoretical Physics Letters. 1982; 36(5): 195—198.

20. Abrahams E., Anderson P., Licciardello D., Ramakrishnan T. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Physical review letters. 1979; 42: 673. https://doi.org/10.1103/PhysRevLett.42.673

21. Hikami S., Larkin A. I., Nagaoka Y., Spin-orbit interaction and magnetoresistance in the two dimensional random system. Progress of Theoretical Physics. 1980; 63(2): 707—710. https://doi.org/10.1143/PTP.63.707

22. Bayev V., Rybin M., Svito I., Przewo´znik J., Kapusta C., Kasiuk J., Vorobyova S., Konakov A., Obraztsova E. The effect of quasi-free graphene layer on the electrical transport properties of sandwich-like graphene/co nanoparticles/graphene structure. Applied Surface Science. 2022; 579: 152119. https://doi.org/10.1016/j.apsusc.2021.152119

23. Ghosh S., Ganesan K., Polaki S. R., Ravindran T., Krishna N. G., Kamruddin M., Tyagi A. Evolution and defect analysis of vertical graphene nanosheets. Journal of Raman Spectroscopy. 2014; 45(8): 642—649. https://doi.org/10.1002/jrs.4530

24. Hiramatsu M., Kondo H., Hori M. Graphene nanowalls. New Progress on Graphene Research. 2013; 10: 51528. https://doi.org/10.5772/51528

25. Behura S. K., Mukhopadhyay I., Hirose A., Yang Q., Jani O. Vertically oriented few-layer graphene as an electron field-emitter, physica status solidi (a). 2013; 210(9): 1817—1821. https://doi.org/10.1002/pssa.201329172

26. Yue Z., Levchenko I., Kumar S., Seo D., Wang X., Dou S., Ostrikov K. K. Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance. Nanoscale. 2013; 5(19): 9283—9288 (2013). https://doi.org/10.1039/C3NR00550J

27. Ghosh S., Ganesan K., Polaki S., Mathews T., Dhara S., Kamruddin M., Tyagi A., Influence of substrate on nucleation and growth of vertical graphene nanosheets. Applied Surface Science. 2015; 349(15): 576—581. https://doi.org/10.1016/j.apsusc.2015.05.038

28. Zhao J., Shaygan M., Eckert J., Meyyappan M., Rummeli M. H. A growth mechanism for free-standing vertical graphene. Nano letters. 2014; 14(6): 3064—3071. https://doi.org/10.1021/nl501039c

29. Rajackait˙e E., Peckus D., Gudaitis R., Andruleviˇcius M., Tamuleviˇcius T., Volyniuk D., Meˇskinis S., Tamuleviˇcius S. Transient absorption spectroscopy as a promising optical tool for the quality evaluation of graphene layers deposited by microwave plasma. Surface and Coatings Technology. 2020; 395: 125887. https://doi.org/10.1016/j.surfcoat.2020.125887

30. Rajackait˙e E., Peckus D., Gudaitis R., Tamuleviˇcius T., Meˇskinis S., Tamuleviˇcius S. The evolution of properties with deposition time of vertical graphene nanosheets produced by microwave plasma-enhanced chemical vapor deposition. Surfaces and Interfaces. 2021; 27: 101529. https://doi.org/10.1016/j.surfin.2021.101529

31. Maximenko A. A., Rajackaite E., Meskinis S., Tamulevicius T., Tamulevicius S., Kharchanka A. A., Fedotov A. K., Fedotova J. A. Electrical transport properties of a carbon nanostructure obtained by plasma-enhanced chemical vapor deposition during thermal cycling. Journal of the Belarusian State University. 2020; (3): 89-96. (2020). (In Russ.). https://doi.org/10.33581/2520-2243-2020-3-89-96

32. Mott N. F., Davis E. A. Electronic processes in noncrystalline materials. Oxford: Oxford university press; 2012: 608.

33. Shklovsky B. I., Efros A. L. Electronic properties of doped semiconductors. Moscow: Nauka; 1979: 416.

34. Polyanskaya T. A., Shmartsev Yu. V. Quantum corrections to the conductivity in semiconductors with 2D and 3D electron gas. Fizika i Tekhnika Poluprovodnikov = Semiconductors. 1989; 23(1): 3—32 (in Russian).

35. Tikhonenko F.V., Kozikov A. A., Savchenko A. K., Gorbache R.V. Transition between electron localization and antilocalization in graphene. Physical review letters. 2009; 103: 226801. https://doi.org/10.1103/PhysRevLett.103.226801

36. Fedotova Y. A., Kharchenko A. A., Fedotov A. K., Chichkov M. V., Malinkovich M. D., Konakov A. O., Vorobyova S. A., Kasyuk Y. V., Gumennik V. E., Maksimenko A. A. Effect of magnetic Co–CoO particles on the carrier transport in monolayer graphene. Physics of the Solid State. 2020; 62: 368—377. https://doi.org/10.1134/S1063783420020134

37. Anderson P., Abrahams E., Ramakrishnan T. Possible explanation of nonlinear conductivity in thin-film metal wires. Physical Review Letters. 1979; 43: 718. https://doi.org/10.1103/PhysRevLett.43.718

38. Abrahams E., Anderson P., Lee P., Ramakrishnan T. Quasiparticle lifetime in disordered two- dimensional metals. Physical Review B. 1981; 24: 6783. https://doi.org/10.1103/PhysRevB.24.6783

39. Pudalov V. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. Proceedings of the International School of Physics ”Enrico Fermi”. 2004; 157, 335—356. https://doi.org/10.3254/978-1-61499-013-0-335


Supplementary files

Review

For citations:


 ,  ,   . Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(2).

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)