Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

A non-stationary model of mass transfer in a self-consistent electrical field for determining the influence of temperature on electrophysical properties of metal oxide memristors

https://doi.org/10.17073/1609-3577j.met202411.636

Abstract

A non-stationary one-dimensional physical and mathematical model of mass transfer of oxygen vacancies and trapped electrons in a self-consistent electric field is presented, this model allows to determine the influence of temperature on the electrophysical properties of metal oxide memristors.

About the Authors

A. N. Busygin
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Alexander N. Busygin — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Applied and Technical Physics



B. H. Gabdulin
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Baurzhan H. Gabdulin — Postgraduate Student, Junior Researcher



S. Yu. Udovichenko
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Sergey Yu. Udovichenko — Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Technical Physics



N. A. Shulaev
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Nikita A. Shulaev — Postgraduate Student, Junior Researcher



A. D. Pisarev
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Alexander D. Pisarev — Cand. Sci. (Eng.), Associate Professor, Department of Applied and Technical Physics, Senior Researcher



A. H. A. Ebrahim
University of Tyumen
Russian Federation

6 Volodarskogo Str., Tyumen 625003

Abdulla H. A. Ebrahim — Cand. Sci. (Phys.-Math.), Junior Researcher



References

1. Larentis S., Nardi F., Balatti S., David C. Gilmer D.C., Ielmini D. Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II: Modeling. IEEE Transactions on Electron Devices. 2012; 59(9): 2468—4275. https://doi.org/10.1109/TED.2012.2202320

2. Kim S., Kim S-J., Kim K.M., Lee S.R., Chang M., Cho E., Kim Y.-B., Kim Ch.J., Chung U. –I., Yoo I.-K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Reports. 2013; 3: 1680. https://doi.org/10.1038/srep01680

3. Kim S., Choi S.H., Lu W. Comprehensive Physical model of dynamic resistive switching in an oxide memristor. Acsnano. 2014; 8(3): 2369—2376. https://doi.org/10.1021/nn405827t

4. Basnet P., Pahinkar D.G., West M.P., Perini C.J., Graham S., Vogel E.M. Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. Journal of Materials Chemistry C. 2020; 8(15): 5092—5101. https://doi.org/10.1039/c9tc06736a

5. Parit A.K., Yadav M.S., Gupta A.K., Mikhaylov A., Rawat B. Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory. Chaos, Solitons and Fractals. 2021; 145(10-12): 110818. https://doi.org/10.1016/j.chaos.2021.110818

6. Busygin A., Udovichenko S., Ebrahim A., Bobylev A., Gubin A. Mathematical model of metal-oxide memristor resistive switching based on full physical model of heat and mass transfer of oxygen vacancies and ions. Physica Status Solidi (A) Applications and Materials. 2023; 220(11): 2200478. https://doi.org/10.1002/pssa.202200478

7. Chernov A.A., Islamov D.R., Pik’nik A.A., Perevalov T.V., Gritsenko V.A. Three-dimensional non-linear complex model of dynamic memristor switching. ECS Transactions. 2017; 75(32): 95—104. https://doi.org/10.1149/07532.0095

8. Kuzmichev D.S., Markeev A.M. Neuromorphic properties of forming-free non-filamentary TiN/Ta2O5/Ta structures with an asymmetric current-voltage characteristic. Nanobiotechnology Reports. 2021; 16(6): 804—810. https://doi.org/10.1134/S2635167621060136


Review

For citations:


Busygin A.N., Gabdulin B.H., Udovichenko S.Yu., Shulaev N.A., Pisarev A.D., Ebrahim A.H. A non-stationary model of mass transfer in a self-consistent electrical field for determining the influence of temperature on electrophysical properties of metal oxide memristors. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):324-329. (In Russ.) https://doi.org/10.17073/1609-3577j.met202411.636

Views: 101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)