A non-stationary model of mass transfer in a self-consistent electrical field for determining the influence of temperature on electrophysical properties of metal oxide memristors
https://doi.org/10.17073/1609-3577j.met202411.636
Abstract
A non-stationary one-dimensional physical and mathematical model of mass transfer of oxygen vacancies and trapped electrons in a self-consistent electric field is presented, this model allows to determine the influence of temperature on the electrophysical properties of metal oxide memristors.
Keywords
About the Authors
A. N. BusyginRussian Federation
6 Volodarskogo Str., Tyumen 625003
Alexander N. Busygin — Cand. Sci. (Phys.-Math.), Associate Professor, Department of Applied and Technical Physics
B. H. Gabdulin
Russian Federation
6 Volodarskogo Str., Tyumen 625003
Baurzhan H. Gabdulin — Postgraduate Student, Junior Researcher
S. Yu. Udovichenko
Russian Federation
6 Volodarskogo Str., Tyumen 625003
Sergey Yu. Udovichenko — Dr. Sci. (Phys.-Math.), Professor, Department of Applied and Technical Physics
N. A. Shulaev
Russian Federation
6 Volodarskogo Str., Tyumen 625003
Nikita A. Shulaev — Postgraduate Student, Junior Researcher
A. D. Pisarev
Russian Federation
6 Volodarskogo Str., Tyumen 625003
Alexander D. Pisarev — Cand. Sci. (Eng.), Associate Professor, Department of Applied and Technical Physics, Senior Researcher
A. H. A. Ebrahim
Russian Federation
6 Volodarskogo Str., Tyumen 625003
Abdulla H. A. Ebrahim — Cand. Sci. (Phys.-Math.), Junior Researcher
References
1. Larentis S., Nardi F., Balatti S., David C. Gilmer D.C., Ielmini D. Resistive switching by voltage-driven ion migration in bipolar RRAM – Part II: Modeling. IEEE Transactions on Electron Devices. 2012; 59(9): 2468—4275. https://doi.org/10.1109/TED.2012.2202320
2. Kim S., Kim S-J., Kim K.M., Lee S.R., Chang M., Cho E., Kim Y.-B., Kim Ch.J., Chung U. –I., Yoo I.-K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Reports. 2013; 3: 1680. https://doi.org/10.1038/srep01680
3. Kim S., Choi S.H., Lu W. Comprehensive Physical model of dynamic resistive switching in an oxide memristor. Acsnano. 2014; 8(3): 2369—2376. https://doi.org/10.1021/nn405827t
4. Basnet P., Pahinkar D.G., West M.P., Perini C.J., Graham S., Vogel E.M. Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. Journal of Materials Chemistry C. 2020; 8(15): 5092—5101. https://doi.org/10.1039/c9tc06736a
5. Parit A.K., Yadav M.S., Gupta A.K., Mikhaylov A., Rawat B. Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory. Chaos, Solitons and Fractals. 2021; 145(10-12): 110818. https://doi.org/10.1016/j.chaos.2021.110818
6. Busygin A., Udovichenko S., Ebrahim A., Bobylev A., Gubin A. Mathematical model of metal-oxide memristor resistive switching based on full physical model of heat and mass transfer of oxygen vacancies and ions. Physica Status Solidi (A) Applications and Materials. 2023; 220(11): 2200478. https://doi.org/10.1002/pssa.202200478
7. Chernov A.A., Islamov D.R., Pik’nik A.A., Perevalov T.V., Gritsenko V.A. Three-dimensional non-linear complex model of dynamic memristor switching. ECS Transactions. 2017; 75(32): 95—104. https://doi.org/10.1149/07532.0095
8. Kuzmichev D.S., Markeev A.M. Neuromorphic properties of forming-free non-filamentary TiN/Ta2O5/Ta structures with an asymmetric current-voltage characteristic. Nanobiotechnology Reports. 2021; 16(6): 804—810. https://doi.org/10.1134/S2635167621060136
Review
For citations:
Busygin A.N., Gabdulin B.H., Udovichenko S.Yu., Shulaev N.A., Pisarev A.D., Ebrahim A.H. A non-stationary model of mass transfer in a self-consistent electrical field for determining the influence of temperature on electrophysical properties of metal oxide memristors. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):324-329. (In Russ.) https://doi.org/10.17073/1609-3577j.met202411.636