Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Quantum chemical modeling of the surface modification of an “armchair” carbon nanotube with cobalt oxide

https://doi.org/10.17073/1609-3577j.met202411.637

Abstract

In this work the adsorption of the cobalt oxide on the surface of the “armchair” carbon nanotube (CNT) in three positions of the adsorption was investigated by quantum chemical modeling with methods of the density functional theory on the B3LYP/3-21G level. The values of the band gap of the pure CNT(6,6) and CNT(6,6)/Co3O4 composites with different adsorption positions were calculated and the mechanisms of its change were determined, the charge distribution in the obtained structures was analyzed. The conducted study permitted the establishment of the possibility of surface modification of CNT(6,6) with cobalt oxide in any of the considered adsorption positions, as evidenced by the observation of a process of chemical adsorption in all the given cases. Such modification leads to a decrease in the band gap, which is associated with an increase in the top of the valence band and a decrease in the bottom of the conduction band. The maximum decrease of the band gap is observed for the adsorption of cobalt oxide to a position where the cobalt atom of the cobalt oxide is located above the center of the CNT hexagon. The electron density shifts from the cobalt oxide to the surface of the CNT, while the cobalt atom of the cobalt oxide charges positively, and the carbon atoms nearby it charge negatively. The obtained results can be useful for the development of new nanoelectronics devices, gas sensors and biosensors.

About the Authors

A. R. El Zanin
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Anton R. El Zanin — Student, Laboratory Assistant of the Department
of Forensic Science and Physical Materials Science



S. V. Boroznin
Volgograd State University
Russian Federation

100 Universitetsky Ave., Volgograd 400062

Sergey V. Boroznin — Dr. Sci. (Phys.-Math.), Associate Professor, Head of the Department of Forensic Science and Physical Materials Science



References

1. Liu B., Wu F., Gui H., Zheng M., Zhou C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano. 2017; 11 (1); 31-53. https://doi.org/10.1021/acsnano.6b06900

2. Su W., Li X., Li L., Yang D., Wang F., Wei X., Zhou W., Kataura H., Xie S., Liu H. Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement. Nature Communications. 2023; 14 (1); 1672. https://doi.org/10.1038/s41467-023-37443-7

3. Tang D. M., Cretu O., Ishihara S., Zheng Y., Otsuka K., Xiang R., Maruyama S., Cheng H. M., Liu C., Golberg D. Chirality engineering for carbon nanotube electronics. Nature Reviews Electrical Engineering. 2024; 1 (3); 149-162. https://doi.org/10.1038/s44287-023-00011-8

4. Riaz A., Alam A., Selvasundaram P. B., Dehm S., Hennrich F., Kappes M. M., Krupke R. Near‐Infrared Photoresponse of Waveguide‐Integrated Carbon Nanotube–Silicon Junctions. Advanced Electronic Materials. 2019; 5 (1); 1800265. https://doi.org/10.1002/aelm.201800265

5. Dubey R., Dutta D., Sarkar A., Chattopadhyay P. Functionalized carbon nanotubes: Synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances. 2021; 3 (20); 5722-5744. https://doi.org/10.1039/D1NA00293G

6. Salah L. S., Ouslimani N., Bousba D., Huynen I., Danlée Y., Aksas H. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. Journal of Nanomaterials. 2021; 2021 (1); 4972770. https://doi.org/10.1155/2021/4972770

7. Devi S., Suman, Chahal S., Singh S., Ankita, Kumar P., Kumar S., Kumar A., Kumar V. Magnetic Fe2O3/CNT nanocomposites: characterization and photocatalytic application towards the degradation of Rose Bengal dye. Ceramics International. 2023; 49 (12); 20071-20079. https://doi.org/10.1016/j.ceramint.2023.03.130

8. Akhter P., Ali F., Ali A., Hussain M. TiO2 decorated CNTs nanocomposite for efficient photocatalytic degradation of methylene blue. Diamond and Related Materials. 2024; 141; 110702. https://doi.org/10.1016/j.diamond.2023.110702

9. Tan C., Luo X., He H., He S., Ren R., Xiao Y., Fu Y., Huang S., Cai Y., Yang Y. Facile fabrication of carbon nanotubes/zinc oxide decorated poly (vinyl alcohol) electrospun nanofiber membrane and its photocatalytic performance. Journal of Applied Polymer Science. 2024; e56132. https://doi.org/10.1002/app.56132

10. Eswaramoorthy N., Rajendran S., Kumar B. A., Nallusamy S., Rengasamy M., Selvaraj Y., Sangaraju S., Krishnan T., Kumaresan G., Rajaram K. Influence of ZnO/MWCNTs based hybrid electrodes for boosting the performance of photovoltaic and supercapacitor devices. Materials Chemistry and Physics. 2024; 316; 129049. https://doi.org/10.1016/j.matchemphys.2024.129049

11. Mallakpour S., Khadem E. Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chemical Engineering Journal. 2016; 302; 344-367. https://doi.org/10.1016/j.cej.2016.05.038

12. Chinh N. D., Hung N. M., Majumder S., Kim C., Kim D. Hole-supply-rate-controlled methanol-gas-sensing reaction over p-type Co3O4/single-walled carbon nanotube hybrid structures. Sensors and Actuators B: Chemical. 2021; 326; 128956. https://doi.org/10.1016/j.snb.2020.128956

13. Hu Z., Fu Y., Hong Z., Huang Y., Guo W., Yang R., Xu J., Zhou L., Yin S. Composite structural batteries with Co3O4/CNT modified carbon fibers as anode: Computational insights on the interfacial behavior. Composites Science and Technology. 2021; 201; 108495. https://doi.org/10.1016/j.compscitech.2020.108495

14. Han Y., Wang Q., Zheng Q., Cao M., Yuan J., Li L. Ternary WSe2@ CNTs/Co3O4 nanocomposites for highly efficient multi-band microwave absorption. Materials Letters. 2022; 325; 132837. https://doi.org/10.1016/j.matlet.2022.132837

15. Neugebauer J., Hickel T. Density functional theory in materials science. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013; 3(5); 438-448. https://doi.org/10.1002/wcms.1125

16. Davidson E. R., Clark A. E. A viewpoint on population analyses. International journal of quantum chemistry. 2022; 122 (8); e26860. https://doi.org/10.1002/qua.2686


Review

For citations:


El Zanin A.R., Boroznin S.V. Quantum chemical modeling of the surface modification of an “armchair” carbon nanotube with cobalt oxide. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024;27(4):317-323. (In Russ.) https://doi.org/10.17073/1609-3577j.met202411.637

Views: 144


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)