Thermophysical Properyies of Aluminum, Tin and Zinc in the Condensed State
https://doi.org/10.17073/1609-3577j.met202504.643
Abstract
Aluminum and its alloys are one of the most used materials in the production of technical products: from electrical wires to aircraft. The development of new aluminum alloys and the constant expansion of the field of their application leads to the need to develop a unified approach to the theoretical description of the physical properties of systems with a different number of components and to determine the influence of metals on the characteristics of the alloy. For the study of thermal behavior of aluminum alloys, binary systems are the most suitable due to the small variability of their compositions. Such alloys are, in particular, antifriction self-lubricating two-component alloys of Al-Sn and Al-Zn systems. In addition, due to the existence of the effect of inheritance by the alloy of a number of characteristic features of components, there is a need to calculate the thermophysical properties of Al, Sn and Zn. In this connection, we approximated the experimental data arrays on the temperature dependences of thermal-physical properties of Al, Sn and Zn using the functions obtained within the framework of the author's quasi-two-phase model of the local-equilibrium region. The features on the obtained graphs in the form of finite jumps, peaks and pits with rounded tops are associated with structural transformations or phase transitions. It is suggested that in the temperature range of 100-200 K there are pits in the temperature dependences of thermal conductivities of aluminum and zinc formed due to structural transformations in these metals or due to the occurrence of structural inhomogeneity in them during crystallization. Predictive estimates of heat capacities of Al60Sn40 and Al95Zn5 alloys obtained using the mixing rule (in chemistry ‒ the rule of obtaining a compound of a given composition) have been carried out.
About the Author
Sergey Vladimirovich TerekhovRussian Federation
Department of Electronic Properties of Metals, Leading Researcher, SPIN: 4285-4685
References
1. Lucz A.R., Suslina A.A. Alyuminij i ego splavy`. Samara: Samar. gos. tex. un-t; 2013. 81 p.
2. Ganiev I.N., Aliev F.A., Odinazoda H.O., Safarov A.M., Jayloev J.H. Heat capacity and thermodynamic functions of aluminum conductive alloy E-Al MgSi (Aldrey) doped with gallium. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2019; 22(3): 219—227. (In Russ.) https://doi.org/10.17073/1609-3577-2019-3-219-227.
3. Ganiev I.N., Abdulakov A.P., Jayloev J. H., Yakubov U.Sh., Safarov A.G., Abulkhaev V.D. Influence of bismuth additives on the thermophysical and thermodynamic properties of aluminum conductive alloy E-AlMgSi (Aldrey). Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2020; 23(1): 86—93. (In Russ.) https://doi.org/10.17073/1609-3577-2020-1-86-93.
4. Ganiev I. N., Faizulloev R. Zh., Zokirov F. Sh., Ganieva N. I. Temperature dependences of the heat capacity and thermodynamic functions of aluminum conducting alloy AlTi0.1 with strontium. High Temperature, 61:3 (2023), 344–349. (In Russ.) https://doi.org/10.1134/S0018151X23030124.
5. Ganiev I.N., Raxmatulloeva G.M., Zokirov F.Sh., E`shov B.B., Aminova N.A., Xudoj-berdizoda S.U. Temperaturnaya zavisimost` te-ploemkosti i izmenenij termodinamicheskix funkcij alyuminievogo provodnikovogo splava AlTi0.1 s natriem. Vestnik Kuzbasskogo gosudarstvennogo texnicheskogo universiteta. 2024; 1: 34—42. (In Russ.) https://doi.org/10.26730/1999-4125-2024-1-34-42.
6. Palm M., Zhang L., Stein F., Sauthoff G. Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °C. J. Intermetallics. 2002; 10(6): 523—540. doi:10.1016/S0966-9795 (02)00022-5.
7. Ganiev I.N., Rakhimov M.R., Otadzhonov S.E., Ismoilova M.Kh., Khudoyberdizoda S.Yu. Influence of lithium on the temperature dependence of heat capacity and thermodynamic functions changes in AK1 alloy based on high-purity aluminum. Voprosy Materialovede-niya. 2023; 4 (116): 42-49. (In Russ.) https:// doi.org/10.22349/1994-6716-2023-116-4-42-49.
8. Ganiev I.N., Sharipova X.Ya., Odinazoda X.O., Ibroximov N.F., Ganieva N.I. Teplofizi-cheskie svojstva i termodinamicheskie funkcii alyuminievo-magnievogo splava AMg2 s in-diem. Vestnik Magnitogorskogo gosudarstvennogo texnicheskogo universiteta im. G.I. Nosova. 2019; 17(4): 34—43. (In Russ.) https:// doi.org/10.18503/1995-2732-2019-17-4-34-43.
9. Zolotorevskij V.S., Belov N.A. Metallovedenie litejny`x alyuminievy`x splavov. Moscow: MISiS; 2005. 376 p. (In Russ.).
10. Abdukady`rova I.X., Bajtelesov S.A. Temperaturnaya i dozovaya zavisimost` teplofizicheskix svojstv nekotory`x konstrukcionny`x alyuminievy`x splavov. Mezhdunarodny`j nauchny`j zhurnal «Al`ternativnaya e`nergetika i e`kologiya». 2011; 1(93): 89—95. (In Russ.) EDN: NVWCFB.
11. Nizomov Z., Mirzoev F.M., Akramov M. B., Saidov R.X. Temperaturnaya zavisimost` teplofizicheskix svojstv alyuminiya marki A5. Doklady` akademii nauk respubliki Tadzhikis-tan. 2014; 57 (2): 140—144. (In Russ.)
12. Rostovcev R.N., Rostovcev G.R. Strukturny`e i termodinamicheskie xarakteristiki splavov sistemy` Al-Zn. Mezhdunarodny`j nauchno-issledovatel`skij zhurnal. 2024; 7(145): 1—8. (In Russ.) https://doi.org/10.60797/IRJ. 2024.145.40.
13. Ganiev I.N., Safarov A.G., Asoev M.Dzh., Yakubov U.Sh., Kabutov K. Temperaturnaya zavisimost` teplofizicheskix svojstv i termodinamicheskix funkcij splavov sistemy` Al-Sn // Vestnik Sibirskogo gosudarstvennogo industrial`nogo universiteta. 2021; 1(35): 35—41. (In Russ.)
14. Berman R. Thermal Conduction in Solids. Oxford: Clarendon Press, 1976. 193 p.
15. Abed E.J. Study of solidification and mechanical properties of Al–Sn casting alloys. Asian Trans. Eng. 2012. V. 2. P. 89—98.
16. Rusin N.M., Skorentsev A.L. Spekanie kak metod polucheniya prochnykh kompozitov Al–Sn s bol’shim soderzhaniem vtoroi fazy. Izv. vuzov. Poroshk. metallurgiya i funkts. pokrytiya. 2017; 1: 20—28. (In Russ.) https://dx.doi.org/ 10.17073/1997-308X-2017-1-20-28.
17. Rusin N.M., Skorentsev A.L., Kolubaev E.A. Effect of equal channel angular pressing on mechanical and tribological properties of sintered Al–Sn composites. J. Mater. Eng. Perf. 2020; 29: 1955—1963.
18. Rusin N.M., Skorentsev A.L., Akimov K. O. Al–40Sn Alloy Produced by Selective Laser Melting of Elemental Powder Mixtures. Physics of Metals and Metallography. 2023; 124: 908—915. (In Russ.) https://doi.org/10.1134/S0031918X23601476.
19. Korzhavy`j P.A., Smirnova E.A., E`jbel`man I.A., Abrikosov I.A., Ruban A.V., Vekilov Yu.X. Priroda izostrukturnogo spinodal`nogo raspada v sisteme Al–Zn. Fizika tverdogo tela. 1997; 39(4): 593—596. (In Russ.)
20. Kambolov D.A. Poverxnostny`e svojstva rasplavov na osnove svincza, cinka, olova i obrazovanie mikro(nano)faz pri ix vzaimodejstvii s med`yu, alyuminiem i special`ny`mi stalyami / Diss. … kand. texn. nauk. Nal`chik: Severo-Kavkazskij gornometallurgicheskij institut (gosudarstvenny`j texnologicheskij universitet), 2014. 138 p. (In Russ.)
21. Noviczkij L.A., Kozhevnikov I.G. Teplofizicheskie svojstva materialov pri nizkix tempe-raturax. Spravochnik. Moscow: Mashinostroenie, 1975. 216 p. (In Russ.)
22. Zinov`ev V.E. Teplofizicheskie svojstva metallov pri vy`sokix temperaturax. Moscow: Metallurgiya, 1989. 384 p. (In Russ.)
23. Larikov L.N., Yurchenko Yu.F. Struktura i svojstva metallov i splavov. Teplovy`e svojstva metallov i splavov. Spravochnik. Kiev: Naukova dumka, 1985. 437 p. (In Russ.)
24. Fizicheskie velichiny`. Spravochnik / Pod red. I.S. Grigor`eva, E.3. Mejlixova. Moscow: E`nergoatomizdat, 1991. 1232 p. (In Russ.)
25. Zinov`ev V.E. Kineticheskie svojstva metallov pri vy`sokix temperaturax. Spravochnik. Moscow: Metallurgiya, 1984. 200 p. (In Russ.)
26. Svojstva e`lementov. Spravochnik. M.E. Dricz (red.). Moscow: Metallurgiya, 1985. 672 p. (In Russ.)
27. Novikova S.I. Teplovoe rasshirenie tverdy`x tel. Moscow: Nauka, 1974. 292 p. (In Russ.)
28. Terexov S.V. Termodinamicheskaya model` razmy`togo fazovogo perexoda v metallicheskom stekle Fe40Ni40P14B6. Fizika i texnika vy`sokix davlenij. 2018; 28(1): 54—61. (In Russ.)
29. Terehov S.V. Thermal properties of matter within the model of a two-phase system / Physics of the Solid State. 2022; 64(8): 1089—1095. (In Russ.) doi:10.21883/PSS.2022.08.54631.352.
30. Kubo R. Thermodynamics. Amsterdam: North-Holland, 1968. 300 p.
31. Kittel Ch. Introduction to solid state physics (5th ed.). New York: Wiley, 1976. 673 p.
32. Terekhov S.V. Calculation of the heat capacity baseline in a model of a two-phase region in the absence of phase transformations and other transitions. Inorganic Materials. 2023; 59 (4): 452—456. (In Russ.) doi:10.1134/S002016852304012X.
33. Terekhov S.V. Heat capacities and thermal expansion coefficients of iron triad metals. Condensed Matter and Interphases. 2023; 25(3): 406—414. (In Russ.) https://doi.org/10.17308/kcmf.2023.25/11265.
34. Terekhov S.V. Thermophysical properties of metals in quasi two-phase model. Physics of Metals and Metallography. 2023; 124(12): 1291—1300. (In Russ.) doi:10.1134/S0031918X23602196.
35. Terekhov S.V. Features on the graphs of thermal characteristics of metals in the absence and presence of phase transitions // Physics of the Solid State. 2024; 66(7): 1104-1109. (In Russ.) doi:10.61011/PSS.2024.07.58983.396.
36. Epifanov G.I. Fizika tverdogo tela. Moscow: Vy`sshaya shkola, 1977. P. 26.
37. Yagodin D.A. Issledovanie strukturnoj neodnorodnosti rasplavov Ga-Bi i Pd-Si metodami akustometrii i gamma-densitometrii. Avtoref. diss. … kand. fiz.-mat. nauk. Ekaterinburg: Ural`skij gosudarstvenny`j pedagogicheskij universitet, 2007. 23 p. (In Russ.)
38. Sheludyak Yu.E., Kashporov L.Ya., Mali-nin L.A., Czalkov V.N. Teplofizicheskie svojstva komponentov goryuchix system. Spravochnik pod red. N.A. Silina. M.: NPO «Informaciya i texniko-e`konomicheskie issledovaniya», 1992. 184 p. (In Russ.)
39. Terexov S.V. Prognozirovanie teplofizi-cheskix svojstv amorfny`x splavov nikelya Ni2B, Ni44Nb56, Ni62Nb38 po danny`m o komponentax. Rasplavy`. 2024; 4: 351—364. (In Russ.)
40. Nikitin V.I., Nikitin K.V. Razvitie i primenenie yavleniya strukturnoj nasledstvennosti v alyuminievy`x splavax. Zhurnal SFU. Texnika i texnologii. 2014; 7(4): 424—429. (In Russ.) https: //elib.sfu-kras.ru/handle/2311/13236.
41. Popel` P.S., Sidorov V.E., Brodova I.G., Kal`vo-Dal`borg M., Dal`borg U. Vliyanie ter-micheskoj obrabotki isxodnogo rasplava na strukturu i svojstva kristallicheskix slitkov i otlivok. Rasplavy`. 2020; 1: 3—36. (In Russ.)
Supplementary files
|
1. Неозаглавлен | |
| Subject | ||
| Type | Other | |
Download
(318KB)
|
Indexing metadata ▾ | |
|
2. Неозаглавлен | |
| Subject | ||
| Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ | |
|
3. Неозаглавлен | |
| Subject | ||
| Type | Other | |
Download
(586KB)
|
Indexing metadata ▾ | |
|
4. Неозаглавлен | |
| Subject | ||
| Type | Other | |
Download
(320KB)
|
Indexing metadata ▾ | |
|
|
5. Неозаглавлен | |
| Subject | ||
| Type | Other | |
View
(29KB)
|
Indexing metadata ▾ | |
|
|
6. Неозаглавлен | |
| Subject | ||
| Type | Other | |
View
(19KB)
|
Indexing metadata ▾ | |
|
|
7. Неозаглавлен | |
| Subject | ||
| Type | Other | |
View
(30KB)
|
Indexing metadata ▾ | |
|
|
8. Неозаглавлен | |
| Subject | ||
| Type | Other | |
View
(31KB)
|
Indexing metadata ▾ | |
|
|
9. Неозаглавлен | |
| Subject | ||
| Type | Other | |
View
(26KB)
|
Indexing metadata ▾ | |
|
10. Неозаглавлен | |
| Subject | ||
| Type | Other | |
Download
(12KB)
|
Indexing metadata ▾ | |
Review
For citations:
Terekhov S.V. Thermophysical Properyies of Aluminum, Tin and Zinc in the Condensed State. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2025;28(3). https://doi.org/10.17073/1609-3577j.met202504.643






























