Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

1.534 mkm Er electroluminescence in the RF magnetron deposited In2O3:Er films on Si substrate.

https://doi.org/10.17073/1609-3577j.met202507.651

Abstract

In2O3:Er films have been synthesized on silicon substrates by RF magnetron sputter deposition. The solid solution ((In1-xErx)2O3) is formed here. The 1.534 mkm erbium electroluminescence is observed by the forward current through the investigated hetero-structure: substrate-n-Si\In2O3:Er-film\ITO-contact. The Er excitation model by the electron-hole recombination is proposed. The model consist of the electrons at the indium oxide conduction band. And the hole current is through the channel at the middle of the In2O3:Er band gap. The hole channel is formed by the defect state density spreading from the valence band edge into the band gap. Therefore the electron-hole recombination energy is lower then the indium oxide band gap and equals to the 1.56 eV. Then the electron-hole recombination excites in resonance the third excited state of Er3+ 4I9/2 (1.53 эВ). Then the non-radiative relaxation to the first excited state 4I13/2 (0.81 эВ) occurs. And finally the 1.534 mkm radiative emission into ground state 4I15/2 occurs.

About the Authors

Konstantin Feklistov
1) Rzhanov Institute of Semiconductor Physics SB RAS, 630090, Novosibirsk, Russia 2) Academ Infrared LLC, 630090, Novosibirsk, Russia
Russian Federation


А. Лемзяков
Институт ядерной физики имени Г.И. Будкера Сибирского отделения Российской академии наук; ЦКП «СКИФ», Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Russian Federation


Д. Абрамкин
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


К. Свит
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


А. Пугачев
Институт автоматики и электрометрии Сибирского отделения Российской академии наук
Russian Federation


В. Володин
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук; Новосибирский государственный университет
Russian Federation


Д. Марин
Новосибирский государственный университет
Russian Federation


Е. Спесивцев
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


Л. Сафронов
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


С. Кочубей
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


К. Ершов
Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук
Russian Federation


А. Капишников
Новосибирский государственный университет; Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Russian Federation


А. Шмаков
ЦКП «СКИФ», Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Russian Federation


А. Шкляев
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук; Новосибирский государственный университет
Russian Federation


Ю. Живодков
Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук
Russian Federation


References

1. Sun C., Wade M., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., Moss B.R., Kumar R., Pavanello F., Atabaki A.H., Cook H.M., Ou A.J., Leu J.C., Chen Y.-H., Asanović K., Ram R.J., Popović M.A., Stojanović V.M. Single-chip microprocessor that communicates directly using light. Nature. 2015; 528: 534—538. https://doi.org/10.1038/nature16454

2. Atabaki A.H., Moazeni S., Pavanello F., Gevorgyan H., Notaros J., Alloatti L., Wade M.T., Sun Ch., Kruger S.A., Al Qubaisi H.M.K., Wang I., Zhang B., Khilo A., Baiocco Ch.V., Popović M.A., Stojanović V.M., Rajeev J. Ram. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018; 556, 349—354. https://doi.org/10.1038/s41586-018-0028-z

3. Feklistov K.V., Lemzyakov A.G., Shklyaev A.A., Protasov D.Yu., Deryabin A.S., Spesivsev E.V., Gulyaev D.V., Pugachev A.M., Esaev D.G. (2023) Electron and hole injection barriers between silicon substrate and RF magnetron sputtered In2O3:Er films. Modern Electronic Materials 9(2): 57–68. https://doi.org/10.3897/j.moem.9.2.109980

4. Cornet Ch., Léger Y., Robert C. Integrated lasers on silicon. Elsevier Ltd.; 2016. 178 p. https://doi.org/10.1016/C2015-0-01237-0

5. Di L., Kurczveil G., Huang X., Zhang C., Srinivasan S., Huang Z., Seyedi M.A., Norris K., Fiorentino M., Bowers J.E., Beausoleil R.G. Heterogeneous silicon light sources for datacom applications. Optical Fiber Technology. 2018; 44: 43—52. https://doi.org/10.1016/j.yofte.2017.12.005

6. Norman J.C., Jung D., Wan Y., Bowers J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics. 2018; 3: 030901. https://doi.org/10.1063/1.5021345

7. Jung D., Norman J., Wan Y., Liu S., Herrick R., Selvidge J., Mukherjee K., Gossard A.C., Bowers J.E. Recent advances in InAs quantum dot lasers grown on on‐Axis (001) silicon by molecular beam epitaxy. Physica Status Solidi (A). 2019; 216(1): 1800602. https://doi.org/10.1002/pssa.201800602

8. Jung D., Herrick R., Norman J., Turnlund K., Jan C., Feng K., Gossard A.C, Bowers J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Applied Physics Letters. 2018; 112(15): 153507. https://doi.org/10.1063/1.5026147

9. Mukherjee K., Selvidge J., Jung D., Norman J., Taylor A.A., Salmon M., Liu A.Y., Bowers J.E., Herrick R.W. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon. Journal of Applied Physics. 2020; 128(2): 025703. https://doi.org/10.1063/1.5143606

10. Shang C., Hughes E., Wan Y., Dumont M., Koscica R., Selvidge J., Herrick R., Gossard A.C., Mukherjee K., Bowers J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica. 2021; 8(5): 749—754. https://doi.org/10.1364/OPTICA.423360

11. Carnall W.T., Fields P.R., Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics. 1968; 49(10): 4424—4442. http://dx.doi.org/10.1063/1.1669893

12. Gruber J.B., Henderson J.R., Muramoto M., Rajnak K., Conway J.G. Energy levels of single‐crystal erbium oxide. The Journal of Chemical Physics. 1966; 45(2): 477—482. http://dx.doi.org/10.1063/1.1727592

13. Ennen H., Schneider J., Pomrenke G., Axmann A. 1.54 mkm luminescence of erbium implanted III-V semiconductors and silicon. Applied Physics Letters. 1983; 43(10): 943—945. http://dx.doi.org/10.1063/1.94190

14. Polman A. Erbium implanted thin film photonic materials. Journal of Applied Physics. 1997; 82(1): 1—39. https://doi.org/10.1063/1.366265

15. Kenyon A.J. Topical review: Erbium in silicon. Semiconductor Science and Technology. 2005; 20(12): R65—R84. https://doi.org/10.1088/0268-1242/20/12/R02

16. Coffa S., Franz`o G., Priolo F. Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes. Journal of Applied Physics. 1997; 81(6): 2784—2793. https://doi.org/10.1063/1.363935

17. Coffa S., Franzò G., Priolo F. High efficiency and fast modulation of Er‐doped light emitting Si diodes. Applied Physics Letters. 1996; 69(14): 2077—2079. https://doi.org/10.1063/1.116885

18. Polman A., van den Hoven G.N., Custer J.S., Shin J.H., Serna R., Alkemade P.F.A. Erbium in crystal silicon: Optical activation, excitation, and concentration limits. Journal of Applied Physics. 1995; 77(3): 1256—1262. https://doi.org/10.1063/1.358927

19. Gusev O.B., Bresler M.S., Pak P.E., Yassievich I.N., Forcales M., Vinh N.Q., Gregorkiewicz T. Excitation cross section of erbium in semiconductor matrices under optical pumping. Physical Review B. 2001; 64(7): 075302. https://doi.org/10.1103/PhysRevB.64.075302

20. Priolo F., Franzo G., Coffa S., Carnera A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Physical Review B. 1998; 57(8): 4443. https://doi.org/10.1103/PhysRevB.57.4443

21. Coffa S., Franz G., Priolo F., Polman A., Serna R. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. Physical Review B. 1994; 49(23): 16313. https://doi.org/10.1103/PhysRevB.49.16313

22. Bradley J.D.B., Pollnau M. Erbium‐doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews. 2011; 5(3): 368—403. https://doi.org/10.1002/lpor.201000015

23. Wang S., Eckau A., Neufeld E., Carius R., Buchal Ch. Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes. Applied Physics Letters. 1997; 71(19): 2824—2826. https://doi.org/10.1063/1.120147

24. Krzyzanowska H., Ni K.S., Fu Y., Fauchet P.M. Electroluminescence from Er-doped SiO2/nc-Si multilayers under lateral carrier injection. Materials Science and Engineering: B. 2012; 177(17): 1547—1550. https://doi.org/10.1016/j.mseb.2011.12.032

25. Berencen Y., Illera S., Rebohle L., Ramirez J.M., Wutzler R., Cirera A., Hiller D., Rodríguez J.A., Skorupa W., Garrido B. Luminescence mechanism for Er3+ ions in a silicon-rich nitride host under electrical pumping. Journal of Physics D: Applied Physics. 2016; 49(8): 085106. https://doi.org/10.1088/0022-3727/49/8/085106

26. Zhu C., Lv C., Gao Z., Wang C., Li D., Ma X., Yang D. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. Applied Physics Letters. 2015; 107(13): 131103. https://doi.org/10.1063/1.4932064

27. Yang Y., Li Y., Xiang L., Ma X., Yang D. Low-voltage driven ~1.54 μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions. Applied Physics Letters. 2013; 102(18): 181111. http://dx.doi.org/10.1063/1.4804626

28. Yang Y., Jin L., Ma X., Yang D. Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure. Applied Physics Letters. 2012; 100(3): 031103. http://dx.doi.org/10.1063/1.3678026

29. Feklistov K.V., Lemzyakov A.G., Prosvirin I.P., Gismatulin A.A., Shklyaev A.A., Zhivodkov Y.A., Krivyakin G.K., Komonov A.I., Kozhukhov А.S., Spesivsev E.V., Gulyaev D.V., Abramkin D.S., Pugachev A.M., Esaev D.G., Sidorov G.Yu. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3 : Er films. Materials Research Express. 2020; 7(12): 25903. https://doi.org/10.1088/2053-1591/abd06b

30. Kim H.K., Li C.C., Nykolak G., Becker P.C. Photoluminescence and electrical properties of erbium-doped indium oxide films prepared by RF sputtering. Journal of Applied Physics. 1994; 76(12): 8209—8211. https://doi.org/10.1063/1.357882

31. Xiao Q., Zhu H., Tu D., Ma E., Chen X. Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 nanocrystals. The Journal of Physical Chemistry C. 2013; 117(20): 10834—10841. http://dx.doi.org/10.1021/jp4030552

32. Tahar R.B.H., Ban T., Ohya Y., Takahashi Y. Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics. 1998; 83(5): 2631—2645. https://doi.org/10.1063/1.367025

33. Hamberg I., Granqvist C.G. Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics. 1986; 60(11): R123—R159. https://doi.org/10.1063/1.337534

34. S. M. Sze, Physics of Semiconductor Devices, A Wiley-Interscince Publication John Wiley & Sons, New York, 1981, pp.456

35. Weiher R.L., Ley R.P. Optical properties of indium oxide. Journal of Applied Physics. 1966; 37(1): 299—302. http://dx.doi.org/10.1063/1.1707830

36. King P.D.C., Veal T.D., Fuchs F., Wang Ch.Y., Payne D.J., Bourlange A., Zhang H., Bell G.R., Cimalla V., Ambacher O., Egdell R.G., Bechstedt F., McConville C.F. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B. 2009; 79(20): 205211. https://doi.org/10.1103/PhysRevB.79.205211

37. Kern W., Puotinen D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review. 1970; 31: 187—206. URL: https://www.americanradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1970-Jun.pdf

38. Tsybulya S. V., Cherepanova S. V., Soloviyova L. P. Polycrystal software package for IBM/PC. Journal of structural chemistry. 1996; 37(2): 332-334. https://doi.org/10.1007/BF02591064

39. de Brito A. S. et al. Structural, optical, and magnetic characterization of Er-doped In2O3 nanoparticles. Journal of Alloys and Compounds. 2024; 990: 174353. https://doi.org/10.1016/j.jallcom.2024.174353.

40. Shayapov V. R. et al. Highly textured AlN films deposited by pulsed DC magnetron sputtering with optimized process parameters. Solid State Communications. 2025; 397: 115821. https://doi.org/10.1016/j.ssc.2024.115821

41. Patterson A. L. The Scherrer formula for X-ray particle size determination. Physical review. 1939; 56(10): 978. https://doi.org/10.1103/PhysRev.56.978

42. G. Nilsson and G. Nelin. Study of the homology between silicon and germanium by thermal-neutron spectroscopy. Phys. Rev. B. 1972; 6: 3777. https://doi.org/10.1103/PhysRevB.6.3777

43. Brockhouse B.N. Lattice Vibrations in Silicon and Germanium, Phys. Rev. Lett. 1959; 2: 256. https://doi.org/10.1103/PhysRevLett.2.256

44. Green, M., Zhao, J., Wang, A. et al. Efficient silicon light-emitting diodes. Nature. 2001; 412: 805–808. https://doi.org/10.1038/35090539

45. Sveinbjornsson E.O. and Weber J. Room temperature electroluminescence from dislocation-rich silicon. Appl. Phys. Lett. 1996; 69: 2686. http://dx.doi.org/10.1063/1.117678


Review

For citations:


Feklistov K.,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   1.534 mkm Er electroluminescence in the RF magnetron deposited In2O3:Er films on Si substrate. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. https://doi.org/10.17073/1609-3577j.met202507.651

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)