Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Effect of nickel electroplating conditions on the strength of Cu/Ni/Au|AuSn solder joints in the fabrication of high-power semiconductor emitters

https://doi.org/10.17073/1609-3577j.met202509.654

Abstract

The dependence of the strength of a Cu/Ni/Au|AuSn solder joint on the conditions of the galvanic deposition process for the nickel barrier layer is studied. It is shown that when using a succinic acid-based electrolyte, the introduction of poorly soluble nickel succinate into the deposited layer can reduce the strength of the solder joint. The key factor controlling the occurrence of this undesirable process is the pH of the electrolyte. This paper attempts to reconstruct the relationship between solder joint strength and the conditions for the formation of a galvanic Ni barrier layer. Graphs of the peel force versus the pH of the nickel plating electrolyte, changes in electrolyte pH depending on the number of parts processed, and calculated equilibrium concentrations of nickel complexes in the electrolyte that affect the quality of the resulting coating are presented. Using mathematical modeling, an attempt was made to predict the redistribution of nickel complexes when adjusting the electrolyte composition and pH using various methods. The calculated strength results were compared with those obtained in practice. Approaches to mitigating the negative effect of nickel succinate are proposed.

About the Authors

A. N. Petrova
JSC POLYUS Research Institute of M.F. Stelmakh
Russian Federation

3-1 Vvedenskogo Str., Moscow 117342

Anna N. Petrova — Head of the Laboratory



A. I. Danilov
JSC POLYUS Research Institute of M.F. Stelmakh
Russian Federation

3-1 Vvedenskogo Str., Moscow 117342

Alexander I. Danilov — Head of the Laboratory



A. A. Marmalyuk
JSC POLYUS Research Institute of M.F. Stelmakh
Russian Federation

3-1 Vvedenskogo Str., Moscow 117342

Aleksandr A. Marmalyuk — Dr. Sci. (Eng.), Professor



References

1. Zeng G., McDonald S., Nogita K. Development of high-temperature solders: Review. Microelectronics Reliability. 2012; 52(7): 1306—1322. https://doi.org/10.1016/j.microel.2012.02.018

2. Ling Z., Ng S.Ch., Li Zh., Fang Sh.N., Nguty T., de Bruin E., Xiao A., Thoonen H. Development of advanced AuSn alloy plating technology for semiconductor application. In: Joint IEEE Inter. symposium on the applications of ferroelectrics, international workshop on acoustic transduction materials and devices & workshop on piezoresponse force microscopy (ISAF/IWATMD/PFM). Chengdu, China. May 2014. https://doi.org/10.1109/ISAF.2014.6917825

3. Diehl R. (ed.). High-power diode lasers: fundamentals, technology, applications. Berlin-Heidelberg: Springer-Verlag; 2000. 408 p. https://doi.org/10.1007/3-540-47853-3

4. Epperlein P.W. Semiconductor laser engineering, reliability, and diagnostics: a practical approach to high power and single mode devices. Chichester: John Wiley & Sons; 2013. 520 p.

5. Glirikhs S.Ya., Tikhonov K.I. Electrolytic and chemical coatings. Theory and practice. Leningrad: Khimiya; 1990. 288 p. (In Russ.)

6. Wei X.-F., Zhu X.-W, Wang R.-C. Growth behavior and microstructure of intermetallics at interface of AuSn20 solder and metalized-Ni layer. Transactions of Nonferrous Metals Society of China. 2017; 27(5): 1199—1205. https://doi.org/10.1016/S1003-6326(17)60139-0

7. Zhu Z.X., Li C.C., Lia L.L., Liu C.K., Kao C.R. Au-Sn bonding material for the assembly of power integrated circuit module. Journal of Alloys and Compounds. 2016; 617: 340—345. https://doi.org/:10.1016/j.jallcom.2016.02.065

8. Kurmashev V.I. Effective methods of influencing electrochemical deposition processes and controlling the properties of metal films in the production of electronic equipment. Весці Акадэміі навук БССР. Серыя фізіка-тэхнічных навук = Izvestiya Akademii nauk BSSR, seriya fiziko-tekhnicheskikh nauk. 1989; (2): 93—99. (In Russ.)

9. Khmyl' A.A., Lanin V.L., Emel'yanov V.A. Electroplated coatings in electronic products. Minsk: Integralpoligraf; 2017. 475 p. (In Russ.)

10. Kudryavtsev N.T. Electrolytic metal coatings. Moscow: Khimiya; 1979. 352 p. (In Russ.)

11. Povetkin V.V., Kovenskii I.M. The structure of electrolytic coatings. Moscow: Metallurgiya; 1989. 135 p. (In Russ.)

12. Gamburg Yu.D. Electroplating coatings. Application handbook. Moscow: Tekhnosfera; 2006. 216 p. (In Russ.)

13. Yoon J.-W., Chun H.-S., Jung S.-B. Reliability analysis of Au-Sn flip-chip solder bump fabricated by co-electroplating. Materials Research. 2007; 22(5): 1219—1229. http://dx.doi.org/10.1557/jmr.2007.0145

14. Dong H.Q., Vuorinen V., Liu X.W., Laurila T., Li J., Paulasto-Krokeckel M. Microstructural evolution and mechanical properties of Au-20wt.%Sn|Ni interconnection. Journal of Electronic Materials. 2016; 45(1): 566—575. https://doi.org/10.1007/s11664-015-4152-3

15. Lee B.-S., Ko Y.-H., Bang J.-H., Lee C.-W., Yoo S., Kim J.-K., Yoon J.-W. Interfacial reactions and mechanical strength of Sn–3.0Ag–0.5Cu/Ni/Cu and Au–20Sn/Ni/Cu solder joints for power electronics applications. Microelectronics Reliability. 2017; 71: 119—125. http://dx.doi.org/10.1016/j.microel.2017.03.011

16. Wang J., Wu Y., Chen W., Xie Y. Wetting behavior of eutectic Au–Sn solder on Ni/Au metallization at different temperatures. Journal of Materials Science: Materials in Electronics. 2022; 33(4): 1—9. https://doi.org/10.1007/s10854-021-07227-0

17. Wu N., Hu Y., Sun S. Microstructure characterization and interfacial reactions between Au-Sn solder and different back metallization systems of GaAs MMICs. Materials. 2020; 13(6): 1266. https://doi.org/10.3390/mal13061266

18. Sedoikin A.A., Tsupak Т.Е. Electrodeposition of nickel from solutions of its salts with dicorboxylic acids. Gal'vanotekhnika i obrabotka poverkhnosti. 2007; 15(4): 10—17. (In Russ.)

19. Popereka M.Ya. Internal stresses in electrolytically deposited metals. Novosibirsk: Zap.-Sib. knizhn. iz-vo; 1966. 335 p. (In Russ.)

20. Evseev A.M., Nikolaeva L.S. Mathematical modeling of chemical equilibria. Moscow: Izd-vo MGU; 1988. 191 p. (In Russ.)

21. McAuley A., Nancollac G.H., Thermodinamics of ion assotiation. Part IX. Some transition-metall succinates. Journal of the Chemical Society (Resumed). 1961: 4458—4463.

22. Campi E. Complexes of metal ions with tartaric, malic, malonic and succinic acids. Annali Di Chimica. 1963; 53: 553.

23. Dobos D. Electrochemical data. Electrochemical data: A handbook for electrochemists in industry and universities. Elsevier Scientific Pub. Co; 1975. 339 p. (Russ. transl.: Dobosh D. Elektrokhimicheskie konstanty. Spravochnik dlia elektrokhimikov. Moscow: Mir; 1980. 365 p.)

24. Smith R.M., Martel A.E. Critical stability constants. Vol. 4. Inorganic complexes. Springer; 1976. 258 p.


Review

For citations:


Petrova A.N., Danilov A.I., Marmalyuk A.A. Effect of nickel electroplating conditions on the strength of Cu/Ni/Au|AuSn solder joints in the fabrication of high-power semiconductor emitters. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. https://doi.org/10.17073/1609-3577j.met202509.654

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)