Долговременная релаксация электропроводности CVD-графена
Аннотация
В образцах поликристаллического CVD-графена на подложке Si/SiO2 размером 5×10 мм2 исследованы изменения (релаксация) зависимости поверхностной электропроводнсти σ□(T) в интервале температур 2 ≤ T ≤ 300 К во времени. Описано наблюдаемое увеличение проводимости со временем при хранении CVD-графена как в воздушной так и гелиевой атмосферах, которое приписано удалению молекул воды с интерфейса графен/SiO2. Показано, что после переноса синтезированного графена на слой SiO2 подложки Si/SiO2 зависимость его слоевой проводимости от температуры σ□(T) описывается комбинацией двумерных квантовых поправок к формуле проводимости Друде в условиях слабой локализации и активационных механизмов. Наблюдаемое изменение поведения кривых поверхностной проводимости со времени σ□(T,t) сопровождается снижением вклада активационного механизма до полного его исчезновения.
Ключевые слова
Об авторах
А. А. ХарченкоБеларусь
ул. Бобруйская, д. 11, 220006, Минск
Харченко Андрей Андреевич — канд. физ.-мат. наук, доцент, ведущий научный сотрудник лаборатории физики перспективных материалов
А. К. Федотов
Институт ядерных проблем Белорусского государственного университета
Беларусь
ул. Бобруйская, д. 11, 220006, Минск
Федотов Александр Кириллович — д-р физ.-мат. наук., профессор, главный научный сотрудник лаборатории физики перспективных материалов
Ю. А. Федотова
Беларусь
ул. Бобруйская, д. 11, 220006, Минск
Федотова Юлия Александровна — д-р физ.-мат. наук., профессор, заместитель директора
М. В. Чичков
Россия
Ленинский просп., д. 4, стр. 1, Москва, 119049
Чичков Максим Владимирович — аспирант кафедры МПиД, инженер, лаборатория «Функциональные низкоразмерные структуры»
М. Д. Малинкович
Россия
Ленинский просп., д. 4, стр. 1, Москва, 119049
Малинкович Михаил Давыдович — канд. физ.-мат. наук, доцент кафедры МПиД
Список литературы
1. Ferrari A.C., Bonaccorso F., Fal’ko V., Novoselov K.S., Roche S., Bøggild P., Borini S., Koppens F.H.L., Palermo V., Pugno N., Garrido J.A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhänen T., Morpurgo A., Coleman J.N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G.F., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A.N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G.M., Hong B.H., Ahn J.-H., Kim J.M., Zirath H., Van Wees B.J., Van Der Zant H., Occhipinti L., Di Matteo A., Kinloch I.A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S.R.T., Tannock Q., Löfwander T., Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015; 7: 4598–4810. https://doi.org/10.1039/C4NR01600A
2. Liu Y., Liu Z., Lew W.S., Wang Q.J. Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Research Letters. 2013; 8: 335. https://doi.org/10.1186/1556-276X-8-335
3. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Reviews of Modern Physics. 2009; 81: 109–162. https://doi.org/10.1103/RevModPhys.81.109
4. Kang K., Cho Y., Yu K. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. Micromachines. 2018; 9: 263. https://doi.org/10.3390/mi9060263
5. Sang M., Shin J., Kim K., Yu K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials. 2019; 9: 374. https://doi.org/10.3390/nano9030374
6. Андрющенко В.А., Бетке И.А., Богомолова А.И., Сорокин Д.В. Изучение динамики высыхающих капель графеновым датчиком. Журнал технической физики. 2025; 95: 247–257. https://doi.org/10.61011/JTF.2025.02.59715.301-24
7. Ruhl G., Wittmann S., Koenig M., Neumaier D. The integration of graphene into microelectronic devices. Beilstein Journal of Nanotechnology. 2017; 8: 1056–1064. https://doi.org/10.3762/bjnano.8.107
8. Lin L., Li J., Ren H., Koh A.L., Kang N., Peng H., Xu H.Q., Liu Z. Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano. 2016; 10: 2922–2929. https://doi.org/10.1021/acsnano.6b00041
9. Zhang X., Ding Y., Su Z., Hu Y., Dai M., Yang H., Wang S., Tian Y., Hu P. Growth of centimeter-scale single-crystal graphene on polycrystalline copper foil for ultrahigh sensitive sweat sensors. Chemical Engineering Journal. 2024; 497: 154716. https://doi.org/10.1016/j.cej.2024.154716.
10. Fedotov A.K., Kharchanka A.A., Gumiennik U.E., Fedotova J.A., Ronassi A.A., Fedotov A.S., Prischepa S.L., Chichkov M.V., Malinkovich M.D. Sheet Resistance and Magnetoresistance in Polycrystalline CVD Graphenes. Physics of the Solid State. 2022; 64: 876. https://doi.org/10.21883/PSS.2022.07.54598.321
11. Jaaniso R., Kahro T., Kozlova J., Aarik J., Aarik L., Alles H., Floren A., Gerst A., Kasikov A., Niilisk A., Sammelselg V. Temperature induced inversion of oxygen response in CVD graphene on SiO2. Sensors and Actuators B: Chemical. 2014; 190: 1006–1013. https://doi.org/10.1016/j.snb.2013.09.068
12. Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I., Novoselov K.S. Detection of individual gas molecules adsorbed on graphene. Nature Materials. 2007; 6: 652–655. https://doi.org/10.1038/nmat1967
13. Ryu S., Liu L., Berciaud S., Yu Y.-J., Liu H., Kim P., Flynn G.W., Brus L.E. Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Letters. 2010; 10: 4944–4951. https://doi.org/10.1021/nl1029607
14. Wehling T.O., Lichtenstein A.I., Katsnelson M.I. First-principles studies of water adsorption on graphene: The role of the substrate. Applied Physics Letters. 2008; 93: 202110. https://doi.org/10.1063/1.3033202
15. Deng S., Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Materials Today. 2016; 19: 197–212. https://doi.org/10.1016/j.mattod.2015.10.002
16. Ladak S., Ball J.M., Moseley D., Eda G., Branford W.R., Chhowalla M., Anthopoulos T.D., Cohen L.F. Observation of wrinkle induced potential drops in biased chemically derived graphene thin film networks. Carbon. 2013; 64: 35–44. https://doi.org/10.1016/j.carbon.2013.06.051.
17. Chen Q., Zhong Y., Zhang Z., Zhao X., Huang M., Zhen Z., He Y., Zhu H. Long-term electrical conductivity stability of graphene under uncontrolled ambient conditions. Carbon. 2018; 133: 410–415. https://doi.org/10.1016/j.carbon.2018.03.056
18. Altshuler B.L., Aronov A.G., Khmelnitsky D.E. Effects of electron-electron collisions with small energy transfers on quantum localisation. Journal of Physics C: Solid State Physics. 1982; 15: 7367–7386. https://doi.org/10.1088/0022-3719/15/36/018
19. Altshuler B.L., Aronov A.G. Electron–Electron Interaction In Disordered Conductors. In: Modern Problems in Condensed Matter Sciences. Elsevier; 1985: 1–153. https://doi.org/10.1016/B978-0-444-86916-6.50007-7.
20. Pudalov V.M. Metallic conduction, apparent metal-insulator transition and related phenomena in two-dimensional electron liquid. Proceedings of the International School of Physics "Enrico Fermi". 2004; 157: 335–356. https://doi.org/10.3254/978-1-61499-013-0-335
21. Gorbachev R.V., Tikhonenko F.V., Mayorov A.S., Horsell D.W., Savchenko A.K. Weak Localization in Bilayer Graphene. Physical Review Letters. 2007; 98: 176805. https://doi.org/10.1103/PhysRevLett.98.176805.
22. Kechedzhi K., McCann E., Fal’ko V.I., Suzuura H., Ando T., Altshuler B.L. Weak localization in monolayer and bilayer graphene. The European Physical Journal Special Topics. 2007; 148: 39–54. https://doi.org/10.1140/epjst/e2007-00224-6
23. Jobst J., Waldmann D., Gornyi I.V., Mirlin A.D., Weber H.B. Electron-Electron Interaction in the Magnetoresistance of Graphene. Physical Review Letters. 2012; 108: 106601. https://doi.org/10.1103/PhysRevLett.108.106601
24. Morozov S.V., Novoselov K.S., Katsnelson M.I., Schedin F., Ponomarenko L.A., Jiang D., Geim A.K. Strong Suppression of Weak Localization in Graphene. Physical Review Letters. 2006; 97: 016801. https://doi.org/10.1103/PhysRevLett.97.016801
25. Park J., Mitchel W.C., Elhamri S., Grazulis L., Altfeder I. Abnormal hopping conduction in semiconducting polycrystalline graphene. Physical Review B. 2013; 88: 035419. https://doi.org/10.1103/PhysRevB.88.035419.
26. Kang M.H., Qiu G., Chen B., Jouvray A., Teo K.B.K., Cepek C., Wu L., Kim J., Milne W.I., Cole M.T. Transport in polymer-supported chemically-doped CVD graphene. Journal of Materials Chemistry C. 2017; 5: 9886–9897. https://doi.org/10.1039/C7TC02263H
27. Mott N.F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. The Philosophical Magazine. 1969; 19: 835–852. https://doi.org/10.1080/14786436908216338
28. Mott N.F., Davis E.A. Electronic processes in non-crystalline materials. 2nd ed. Clarendon press; 2012
29. Shklovskii B.I., Efros A.L. Electronic Properties of Doped Semiconductors. Springer Berlin Heidelberg; 1984. https://doi.org/10.1007/978-3-662-02403-4
30. Федотова Ю.А., Харченко А.А., Федотов А.К., Чичков М.В., Малинкович М.Д., Конаков А.О., Воробьева С.А., Касюк Ю.В., Гуменник В.Э., Kula M., Mitura-Nowak M., Максименко А.А., Przewoznik J., Kapusta Cz. Влияние магнитных частиц Co-CoO на свойства электропереноса в однослойном графене. Физика Твердого Тела. 2020; 62: 316–325. https://doi.org/10.21883/FTT.2020.02.48885.587
31. Kharchanka A.A., Fedotov A.K., Fedotova J.A. Carrier transport and induced magnetism in nanostructured carbon-based material manufactured by PECVD method. Next Materials. 2025; 9: 101081. https://doi.org/10.1016/j.nxmate.2025.101081
32. Харченко А.А., Федотов А.К., Федотова Ю.А. Электротранспортные свойства углеродной наноструктуры, полученной методом PECVD. Известия высших учебных заведений. Материалы электронной техники. 2025; 28(2).
33. Харченко А.А., Федотов А.К., Воробьева С.А., Конаков А.О., Малинкович М.Д., Чичков М.В., Казимиров Н.А., Федотова Ю.А., Ивашкевич О.А. Влияние наночастиц Co–CoO на концентрацию носителей заряда в гибридной структуре на основе однослойного CVD графена. Известия высших учебных заведений. Материалы электронной техники. 2024;27(3):254-261. https://doi.org/10.17073/1609-3577j.met202405.585
34. Chen J.-H., Jang C., Xiao S., Ishigami M., Fuhrer M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology. 2008; 3: 206–209. https://doi.org/10.1038/nnano.2008.58.
35. Бутко А.В., Бутко В.Ю. Электрический транспорт в графене с различными интерфейсными условиями. Физика Твердого Тела. 2015; 57: 1031–1033.
36. Tikhonenko F.V., Horsell D.W., Gorbachev R.V., Savchenko A.K. Weak Localization in Graphene Flakes. Physical Review Letters. 2008; 100: 056802. https://doi.org/10.1103/PhysRevLett.100.056802.
37. Zion E., Haran A., Butenko A., Wolfson L., Kaganovskii Y., Havdala T., Sharoni A., Naveh D., Richter V., Kaveh M., Kogan E., Shlimak I. Localization of Charge Carriers in Monolayer Graphene Gradually Disordered by Ion Irradiation. Graphene. 2015; 04: 45–53. https://doi.org/10.4236/graphene.2015.43005
38. Fedotov A.K., Gumiennik U.E., Fedotova J.A., Przewoźnik J., Kapusta C. Low-temperature carrier transport in magnetic field in sandwich-like graphene/Co nanoparticles/graphene structure. Physica E: Low-dimensional Systems and Nanostructures. 2024; 155: 115833. https://doi.org/10.1016/j.physe.2023.115833
39. Полянская Т.А., Шмарцев Ю.В. Квантовые поправки к проводимости в полупроводниках с двумерным и трехмерным электронным газом. Эксперимент. Физика и техника полупроводников. 1989; 23: 3–32.
40. Nandee R., Chowdhury M.A., Shahid A., Hossain N., Rana M. Band gap formation of 2D materialin graphene: Future prospect and challenges. Results in Engineering. 2022; 15: 100474. https://doi.org/10.1016/j.rineng.2022.100474
41. Velasco-Soto M.A., Pérez-García S.A., Alvarez-Quintana J., Cao Y., Nyborg L., Licea-Jiménez L. Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon. 2015; 93: 967–973. https://doi.org/10.1016/j.carbon.2015.06.013
42. Sharma N., Arif M., Monga S., Shkir M., Mishra Y.K., Singh A. Investigation of bandgap alteration in graphene oxide with different reduction routes. Applied Surface Science. 2020; 513: 145396. https://doi.org/10.1016/j.apsusc.2020.145396
43. Pivovarov P.A., Frolov V.D., Zavedeev E.V., Konov V.I. Change in Graphene Electronic Properties in the Presence of Acetone Vapor. Bulletin of the Lebedev Physics Institute. 2018; 45: 209–213. https://doi.org/10.3103/S1068335618070047
44. El-Sayed A.-M., Watkins M.B., Afanas’ev V.V., Shluger A.L. Nature of intrinsic and extrinsic electron trapping in SiO2. Physical Review B. 2014; 89: 125201. https://doi.org/10.1103/PhysRevB.89.125201.
45. Samaddar S., Yudhistira I., Adam S., Courtois H., Winkelmann C.B. Charge Puddles in Graphene near the Dirac Point. Physical Review Letters. 2016; 116: 126804. https://doi.org/10.1103/PhysRevLett.116.126804.
46. Fan X., Nouchi R., Tanigaki K. Effect of Charge Puddles and Ripples on the Chemical Reactivity of Single Layer Graphene Supported by SiO2 /Si Substrate. The Journal of Physical Chemistry C. 2011; 115: 12960–12964. https://doi.org/10.1021/jp202273a
47. Ma J., Michaelides A., Alfè D., Schimka L., Kresse G., Wang E. Adsorption and diffusion of water on graphene from first principles. Physical Review B. 2011; 84: 033402. https://doi.org/10.1103/PhysRevB.84.033402.
48. Yavari F., Kritzinger C., Gaire C., Song L., Gulapalli H., Borca‐Tasciuc T., Ajayan P.M., Koratkar N. Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules. Small. 2010; 6: 2535–2538. https://doi.org/10.1002/smll.201001384
49. Закарян А.А., Арутюнян В.М. Влияние влажности на запрещенную зону графена. Известия НАН Армении Физика. 2015; 50: 350–356.
50. Guinea F., Katsnelson M.I., Geim A.K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics. 2010; 6: 30–33. https://doi.org/10.1038/nphys1420
Рецензия
Для цитирования:
Харченко А.А., Федотов А.К., Федотова Ю.А., Чичков М.В., Малинкович М.Д. Долговременная релаксация электропроводности CVD-графена. Известия высших учебных заведений. Материалы электронной техники. 2025;28(3).






























