Organic electrolytes based on propylene carbonate for supercapacitors used in power supplies for wearable electronics
https://doi.org/10.17073/1609-3577j.met202511.660
Abstract
The results of a systematic study of propylene carbonate (PC) based organic electrolytes with alkylammonium tetrafluoroborates for use in supercapacitors (SC) designed for wearable electronics and self-charging power supplies are presented. The relevance of the study is due to the requirement to combine high specific energy of SC, electrochemical stability over a wide temperature range and safety during operation, especially as part of miniature autonomous devices. Unlike acetonitrile (AN), which is traditionally used in electrolytes for SC, PC is nontoxic and fireproof, however, its high viscosity limits the electrical conductivity of electrolytes, which makes it critically important to choose the optimal salt. The properties of PC-based electrolytes with tetrafluoroborates of tetraethylammonium (TEA·TFB), methyltriethylammonium (TEMA·TFB), spiro-(1,1')-bipyrrolidinium (SBP·TFB) and 1,1-dimethylpyrrolidinium (DMP·TFB), differing in size and structure of cations (acyclic and cyclic), have been studied. All the salts studied provide similar capacitance characteristics of SC cells, but TEA·TFB exhibits slightly lower values due to the larger size of the cation. Salts with cyclic cations (SBP·TFB and especially DMP·TFB) provide significantly wider operating voltages at temperatures elevated to 85 °C, while electrolytes with TEA·TFB and TEMA·TFB degrade at temperatures above 60 °C. Resource tests (up to 70,000 cycles at temperatures of 50-95 ℃) have confirmed the electrochemical and thermal stability of the DMP·TFB+PC electrolyte: SC cells with this electrolyte retain 80% of their original capacity after 50,000 cycles of galvanostatic charge-discharge and allow the use of an operating voltage up to 3.0 V. The recommended temperature range for the operation of SC with DMP·TFB+PC electrolyte is 0 °C – 85 °C with the possibility of a short-term temperature increase to 95 °C. At temperatures below 0 °C, an increase in viscosity leads to a sharp decrease in capacitance characteristics. Thus, an electrolyte based on PC and DMP·TFB salt is promising for SC in terms of use in wearable electronics devices.
About the Authors
S. V. StakhanovaRussian Federation
9-1 Miusskaya Sq., Moscow 125047
Svetlana V. Stakhanova — Cand. Sci. (Chem.), Associate Professor, Head of the Department of Analytical Chemistry
L. A. Puntusova
Russian Federation
5-8a Entuziastov Passage, Moscow 111024
Lyudmila A. Puntusova — Head of the Laboratory
L. A. Gurchenkova
Russian Federation
9-1 Miusskaya Sq., Moscow 125047
Lidiya A. Gurchenkova — Specialist in Educational and Methodological, Faculty of Natural Sciences
E. V. Shmakova
Russian Federation
9-1 Miusskaya Sq., Moscow 125047
Elizaveta V. Shmakova — Master's Student
I. S. Krechetov
Russian Federation
4-1 Leninskiy Ave., Moscow 119049
Ilya S. Krechetov — Cand. Sci. (Phys.-Math.), Associate Professor of the Department of Physical Chemistry
L. V. Kozhitov
Russian Federation
4-1 Leninskiy Ave., Moscow 119049
Lev V. Kozhitov — Dr. Sci. (Eng.), Professor, Professor of the Department of Technology of Materials of Electronics
References
1. Vol'fkovich Y.M. Electrochemical supercapacitors (review). Elektrokhimiya = Electrochemistry. 2021; 57(4): 197—238. (In Russ.). https://doi.org/10.31857/S0424857021040101
2. Galimzyanov R.R., Stakhanova S.V., Krechetov I.S., Kalashnik A.T., Astakhov M.V., Lisitsin A.V., Rychagov A.Yu., Galimzyanov T., Tabarov F.S. Electrolyte mixture based on acetonitrile and ethyl acetate for a wide temperature range performance of the supercapacitors. Journal of Power Sources. 2021; 495: 229442. https://doi.org/10.1016/j.jpowsour.2020.229442
3. Simon P., Gogotsi Y. Perspectives for electrochemical capacitors and related devices. Nature Materials. 2020; 19(11): 1151—1163. https://doi.org/10.1038/s41563-020-0747-z
4. Molahalli V., Chaithrashree K., Singh M. K., Agrawal M., Krishnan S. G., Hegde G. Past decade of supercapacitor research – Lessons learned for future innovations. Journal of Energy Storage. 2023; 70(32): 108062. https://doi.org/10.1016/j.est.2023.108062
5. Olabi A. G., Abbas Q., Al Makky A., Abdelkareem M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy. 2022; 248(12): 123617. https://doi.org/10.1016/j.energy.2022.123617
6. Tarasenko A.B., Popel’ O.S., Monin S.V. Selection of energy storage for a micro gas turbine unit operating autonomously in northern conditions. Teploenergetika = Thermal Engineering. 2023; (12): 101—113. (In Russ.). https://doi.org/10.56304/S0040363623120123
7. Lemian D., Bode F. Battery-supercapacitor energy storage systems for electrical vehicles: A review. Energies. 2022; 5(15): 683. https://doi.org/10.3390/en15155683
8. Shinde P.A., Abbas Q., Chodankar N.R., Ariga K., Abdelkareem M.A., Olabi A.G. Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review. Journal of Energy Chemistry. 2023; 79: 611—638. https://doi.org/10.1016/j.jechem.2022.12.030
9. Liu R., Wang Z.L., Fukuda K., Someya T. Flexible self-charging power sources. Nature Reviews Materials. 2022; 7(11): 870—886. https://doi.org/10.1038/s41578-022-00441-0
10. Gao Y., Rezaie M., Choi S. A wearable, disposable paper-based self-charging power system integrating sweat-driven microbial energy harvesting and energy storage devices. Nano Energy. 2022; 104(23): 107923. https://doi.org/10.1016/j.nanoen.2022.107923
11. Dong K., Wang Z.L. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors. 2021; 42(10): 101601. https://doi.org/10.1088/1674-4926/42/10/101601
12. Rejeb A., Rejeb K., Treiblmaier H., Appolloni A., Alghamdi S., Alhasawi Y., Iranmanesh M. The Internet of Things (IoT) in healthcare: Taking stock and moving forward. Internet of Things. 2023; 22: 100721. https://doi.org/10.1016/j.iot.2023.100721
13. Bansal S., Kumar D. IoT ecosystem: A survey on devices, gateways, operating systems, middleware and communication. International Journal of Wireless Information Networks. 2020; 27(4): 340—364. https://doi.org/10.1007/s10776-020-00483-7
14. Zhao J., Burke A.F. Review on supercapacitors: Technologies and performance evaluation. Journal of Energy Chemistry. 2021; 59: 276—291. https://doi.org/10.1016/j.jechem.2020.11.013
15. Wang Y., Zhang L., Hou H., Xu W., Duan G., He S., Jiang S. Recent progress in carbon-based materials for supercapacitor electrodes: A review. Journal of Materials Science. 2021; 56: 173—200. https://doi.org/10.1007/s10853-020-05157-6
16. Kiseleva E.A., Zhurilova M.A., Shkolnikov E.I. Electrodes of supercapacitors from nanoporous carbon with nanocarbon additives. Nanosystems Physics Chemistry Mathematics. 2018; 9(1): 123—124. https://doi.org/10.17586/22208054201891123124
17. Zaporotskova I.V. Boroznin S.V., Boroznina N.P., Dryuchko E.S., Verevkina K.Y., Butenko Y.V., Zaporotskov P.A., Kozhitov LV., Popkova AV., Grigoriev A.D. Nitrogen-carbon nanotubes as a basis for a new type of semiconductor materials for electronics devices. Modern Electronic Materials. 2024; 10(4): 197—202. https://doi.org/10.3897/j.moem.10.4.142799
18. Choi C., Ashby D.S., Butts D.M., DeBlock R.H., Wei Q., Lau J., Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials. 2023; 5(1): 5—19. https://doi.org/10.1038/s41578-019-0142-z
19. Park H.W., Roh K.C. Recent advances in and perspectives on pseudocapacitive materials for supercapacitors – A review. Journal of Power Sources. 2023; 557(1): 232558. https://doi.org/10.1016/j.jpowsour.2022.232558
20. Sleptsov V.V., Goffman V.G., Diteleva A.O., Revenok T.V., Diteleva E.O. Physical model of electrode material for hybrid capacitors. Protection of Metals and Physical Chemistry of Surfaces. 2023; 59(2): 149—154. (In Russ.). https://doi.org/10.31857/S0044185623700171
21. Sleptsov V.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Kuzkin V.I. Highly porous electrode material for hybrid capacitors of high specific energy intensity. Protection of Metals and Physical Chemistry of Surfaces. 2023; 60(5): 551—558. (In Russ.). https://doi.org/10.31857/S0044185624050125
22. Muratov D.G., Sleptsov V.V., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Zorin A.V. Electrode materials based on carbon and metal-organic framework structures with built-in chemically active and functional elements. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2024; 27(3): 199—222. (In Russ.). https://doi.org/10.17073/1609-3577j.met202405.582
23. Balducci A. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. Journal of Power Sources. 2016; 326(10): 534—540. https://doi.org/10.1016/j.jpowsour.2016.05.029
24. Zhong C., Deng Y., Hu W. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews. 2015; 44(21): 7484—7539. https://doi.org/10.1039/C5CS00303B
25. Pohlmann S., Ramirez-Castro C., Balducci A. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction. Journal of the Electrochemical Society. 2015; 162(5): A5020—A5030. https://doi.org/10.1149/2.0041505jes
26. Béguin F., Presser V., Balducci A., Frackowiak E. Carbons and electrolytes for advanced supercapacitors. Advanced Materials. 2014; 26(14): 2219—2251. https://doi.org/10.1002/adma.201304137
27. Patent China, CN114573525A IPC, C07D295/037; H01G11/62. Tang T., Ji Y., Zhang T., Gao D., Im J.-D., Xiong K. Preparation method and application of cyclic quaternary ammonium salt electrolyte. Appl.: 11.30.2020; publ. 06.03.2022.
28. Decaux C., Ghimbeu C. M., Dahbi M., Anouti M., Lemordant D., Béguin F., Vix-Guterl C., Raymundo-Piñero E. Influence of electrolyte ion–solvent interactions on the performances of supercapacitors porous carbon electrodes. Journal of Power Sources. 2014; 263: 130—140. https://doi.org/10.1016/j.jpowsour.2014.04.024
29. Acharjee A., Saha B. Organic electrolytes in electrochemical supercapacitors: Applications and developments. Journal of Molecular Liquids. 2024; 400: 124487. https://doi.org/10.1016/j.molliq.2024.124487
30. Ue M. Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate. Electrochimica Аcta. 1994; 39(13): 2083—2087. https://doi.org/10.1016/0013-4686(94)85092-5
31. Nguyen H.V.T., Kwak K., Lee K.K. 1,1-Dimethylpyrrolidinium tetrafluoroborate as novel salt for high-voltage electric double-layer capacitors. Electrochimica Acta. 2019; 299: 98—106. https://doi.org/10.1016/j.electacta.2018.12.155
32. Köps L., Kreth F.A., Bothe A., Balducci A. High voltage electrochemical capacitors operating at elevated temperature based on 1,1-dimethylpyrrolidinium tetrafluoroborate. Energy Storage Materials. 2022; 44: 66—72. https://doi.org/10.1016/j.ensm.2021.10.006
Review
For citations:
Stakhanova S.V., Puntusova L.A., Gurchenkova L.A., Shmakova E.V., Krechetov I.S., Kozhitov L.V. Organic electrolytes based on propylene carbonate for supercapacitors used in power supplies for wearable electronics. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. https://doi.org/10.17073/1609-3577j.met202511.660






























