PHOTOCONVERTERS IN SOLAR SPLITTING SYSTEM
https://doi.org/10.17073/1609-3577-2013-3-46-50
Abstract
This paper presents results on the simulation of photo converters in a spectral splitting system where solar radiation is separated into three spectral ranges (∆λ1<500 nm, ∆λ2 = 500−725 nm and ∆λ3>725 nm) by means of dichroic filters and then converted to electrical energy by photoconverters based on InGaN/GaN, GaAs/AlGaAs single−junction heterostructures and monocrystalline silicon c−Si. Special attention is paid to the absorption spectrum spreading due to more efficient conversion of the ultraviolet part of the spectrum. The total efficiency of the system varies from 21% to 37% depending on the design of heterostructures.
About the Authors
S. Yu. KurinRussian Federation
V. D. Doronin
Russian Federation
A. A. Antipov
Russian Federation
B. P. Papchenko
Russian Federation
H. Helava
Russian Federation
M. I. Voronova
Russian Federation
A. S. Usikov
Russian Federation
Yu. N. Makarov
Russian Federation
K. V. Eidel’man
Russian Federation
References
1. Guter, W. W. Current−matched triple junction solar cell reaching 41,1 % conversion efficiency under contrated sunlight / W. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, F. Dimroth // Appl. Phys. Lett. − 2009. − V. 94, Iss. 22. − P. 223504.
2. Law, D. C. Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems / D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, D. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, N. H. Karam // Sol. Energy Mater. and Sol. Cells. − 2010. − V. 94, N 8. − P. 1314—1318.
3. Newman, F. D. Optimization of inverted metamorphic multijunction solar cells for field−deployed concentrating PV systems/ F. D. Newman, D. J. Aiken, P. M. Patel, D. R. Chumney, I. Aeby, R. W. Hoffman, P. R. Sharps // Proc. 34th IEEE Photovoltaic Specialists Conf. − Philadelphia (PA), 2009. − P. 001611.
4. Lantratov, V. M. Vysokoeffektivnye dvuhperehodnye GaInP/GaAs solnechnye elementy, poluchennye metodom MOS−gidridnoi epitaksii / V. M. Lantratov, N. A. Kalyuzhnyi, S. A. Mintairov, N. H. Timoshina, M. Z. Shvarc, V. M. Andreev // FTP. − 2007. − T. 41, Iss. 6. − P. 751—755.
5. Fraas, I. Demonstration of a 33 % efficient Cassegrainian solar modul / I. Fraas, J. Avery, H. Huang, L. Minkin, E. Shifman // Proc. IEEE 4th World Conf. on Photovoltaic Energy Conversion. − Hawaii, 2006.
6. Barnett, A. Very high efficiency solar cell modules / A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, D. Salzman // Progr. Photovolt.: Res. Appl. − 2009. − V. 17, N 1. − P. 75.
7. Groβ, B. Highly efficient light splitting photovoltaic receiver / B. Groβ, G. Peharz, G. Siefer, M. Peters, J. S. Goldschmidt, M. Steiner, W. Guter, V. Klinger, B. George, F. Dimroth // Proc. 24th Europ. Photovoltaic Solar Energy Conf. − Hamburg, 2009. − P. 130.
8. Wang, X. Outdoor Measurements for High Efficiency Solar Cell Assemblies / X. Wang, N. Wait, P. Murcia, K. Emery, M. Steiner, F. Kiamilev, K. Goossen, C. Honsberg, A. Barnett // Ibid. − Hamburg, 2009. − P. 811.
9. Hvostikov, V. P. Vysokoeffektivnyi (eta = 39,6 %, AM 1.5D) kaskad fotopreobrazovatelei v sisteme so spektral’nym rasshepleniem solnechnogo izlucheniya / V. P. Hvostikov, A. S. Vlasov, S. V. Sorokina, N. S. Potapovich, N. H. Timoshina, M. Z. Shvarc, V. M. Andreev // FTP. − 2011. − T. 45, Iss. 6. − P. 810—815.
10. Barnett, A. Initial test bed for very high efficiency solar cells / A. Barnett, X. Wang, N. Waite, P. Murcia, C. Honsberg, D. Kirkpatrick, D. Laubacher, F. Kiamilev, K. Goossen, M. Wanlass, M. Steiner, R. Schwartz, J. Gray, A. Gray, P. Sharps, K. Emery, L. Kaz merski // Proc. IEEE Photovoltaic Specialists Conf. − San Diego, 2008. − P. 1563.
11. Khvostikov, V. P. Single−junction solar cells for spectrum splitting PV system / V. P. Khvostikov, S. V. Sorokina, N. S. Potapovich, A. S. Vlasov, M. Z. Shvarts, N. Kh. Timoshina, V. M. Andreev // Proc. 25th Europ. Photovoltaic Solar Energy Conf. and Exhibition. − Valencia, 2010. − P. 167—171.
12. Brown, G. F. Finite element simulations of compositionally graded InGaN solar cells / G. F. Brown, J. W. Ager, W. Walukiewicz, J. Wu // Sol. Energy Materials and Sol. Cells. − 2010. − V. 94, Iss. 3. − P. 478—483.
13. Shen, X. Simulation of the InGaN-based tandem solar cells / X. Shen, S. Lin, F. Li, Y. Wei, S. Zhong, H. Wan, J. Li // Proc. SPIE 7045. Photovoltaic Cell and Module Technologies II, 70450E. − 2008.
14. Semiconductors on NSM // http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
Review
For citations:
Kurin S.Yu., Doronin V.D., Antipov A.A., Papchenko B.P., Helava H., Voronova M.I., Usikov A.S., Makarov Yu.N., Eidel’man K.V. PHOTOCONVERTERS IN SOLAR SPLITTING SYSTEM. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2013;(3):46-50. (In Russ.) https://doi.org/10.17073/1609-3577-2013-3-46-50