Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

FORMATION OF CROSS-CUTTING STRUCTURES WITH DIFFERENT POROSITY ON THICK SILICON WAFERS

https://doi.org/10.17073/1609-3577-2014-1-8-12

Abstract

Through three−layered structure has been formed on silicon wafers 500 microns thick by electrochemical etching in a solution of hydrofluoric acid without using additional deletions monocrystalline layers. The resulting structures are divided into two types. The first type pass−through structure comprises two outermost macroporous silicon layers 220—247,5 microns thick with a pore diameter 7—10 microns and an average mesoporous silica layer 5—60 microns thick with a pore diameter of 100—150 nm. The second type pass−through structure includes macroporous silicon layer 250 microns in thickness, interlocking in the depth of the silicon wafer to form a cavity the size of 4—8 microns. The developed technology will allow forming monolithic structures of membrane−electrode assembly microfuel elements in an easier and more reliable manner.

About the Authors

V. A. Yuzova
Siberian Federal University
Russian Federation

Professor



F. F. Merkushev
Siberian Federal University
Russian Federation
Posgraduate Student



E. A. Lyaykom
Siberian Federal University
Russian Federation
student


References

1. Grinberg V. A., Skundin A. M. Microfuel cells: Modern state and future development. Elektrohimiya. 2010, vol. 46, no. 9, pp. 1027—1043. (In Russ.)

2. Zabrodskii A. G., Gurevich S. A., Kozhevin V. M., Astrova E. V., Nechitailov A. A., Sreseli O. M., Terukov E. I., Kompan M. E. Micro- and nanotechnologies for portable fuel cells. Al’ternativnaya energetika i ekologiy. 2007, no. 2, pp. 54—59. (In Russ.)

3. Pichonat T., Gauthier−Manuel B., Hauden D. A. New proton-conducting porous silicon membrane for small fuel cells. Chem. Eng. J., 2004, vol. 101, pp. 107—111.

4. Astrova, E. V., Nechitailov A. A. , Zabrodskii A. G. Silicon technologies for micro fuel cells. Al’ternativnaya energetika i ekologiya. 2007, no. 2, pp. 60—65. (In Russ.)

5. Astrova E. V., Ratnikov V. V., Remenyuk A. D., Shul’pina I. L. Research of deformations and the defects of a crystal lattice arising at oxidation of macroporous silicon. Fizika i tekhnika poluprovodnikov. 2002, vol. 36, iss. 9, pp. 1111—1121. (In Russ.)

6. Buchin E. Yu., Postnikov A. V., Prokaznikov A. V., Svetovoi V. B., Churilov A. B. Influence of modes of processing on morphology and optical properties of porous silicon of n-type. Pis’ma v zhurnal tekhnicheskoi fiziki. 1995, vol. 21, iss. 1, pp. 60—65. (In Russ.)

7. Buchin, E. Yu., Prokaznikov A. V. Management of morphology of porous silicon of n−type. PZhTE, 1997, vol. 23, iss. 6, pp. 80—84. (In Russ.)

8. Goryachev, D. N., Belyakov L. V., Sreseli O. M. About the mechanism of formation of porous silicon. Fizika i tekhnika poluprovodnikov. 2000, vol. 34, iss. 9, pp. 1130—1134. (In Russ.)


Review

For citations:


Yuzova V.A., Merkushev F.F., Lyaykom E.A. FORMATION OF CROSS-CUTTING STRUCTURES WITH DIFFERENT POROSITY ON THICK SILICON WAFERS. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(1):8-12. (In Russ.) https://doi.org/10.17073/1609-3577-2014-1-8-12

Views: 971


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)