Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

BOUNDARY PROCESSES IN ELECTROLYTE — SILICON INTERFACE AREA DURING SELF–ORGANIZATION OF MOSAIC STRUCTURE OF 3D–ISLANDS OF POROUS SILICON NANOCRYSTALLITES AT LONG–TERM ANODE ETCHING OF P–SI (100) IN ELECTROLYTE WITH AN INTERNAL SOURCE OF CURRENT

https://doi.org/10.17073/1609-3577-2014-1-31-36

Abstract

The formation and self−organization of porous silicon (por-Si) surface mosaic structure at long anodic etching of p-type conductivity Si (100) (p-Si) in electrolytes with an internal power source has been considered. We show that the formation of 3D islets of mosaic structure nanocrystallites of por-Si occurs with the participation of the adsorbed deposited silicon atoms formed as a result of disproportioning reactions at etching of silicon single crystals, as is the case for epitaxial growth of nanocrystallites with molecular beam deposition of silicon atoms on А3В5 and Si semiconductor surface and their further spontaneous self−organization. We note the significant role of oxidation of the silicon surface in the formation and self−organization of a mosaic structure of por-Si during long-term anodic etching of p-Si (100) in HF : H2O2 electrolyte quantum−size and effects occurring in local areas of atomic rough surfaces real crystal silicon.

About the Authors

K. B. Tynyshtykbayev
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov st. 11
Kazakhstan
Doctor of Engineering, Chief Researcher


Y. A. Ryabikin
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov st. 11
Kazakhstan
Candidate of Physico−Mathematical Sciences, Leading Researcher


S. Z. Tokmoldin
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov st. 11
Kazakhstan
Doctor of Physico−Mathe ma tical Sciences, Director


B. A. Rakymetov
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov st. 11
Kazakhstan
Engineer


T. Aytmukan
Institute of Physics and Technology, 050032, Kazakhstan, Almaty, Ibragimov st. 11
Kazakhstan
Engineer


H. A. Abdullin
Al−Farabi Kazakh National University, 050040, Kazakhstan, Almaty, Al−Farabi av., 71
Kazakhstan
Doctor of Physico−Mathematical Sciences, Chief Researcher


References

1. Andreev A. F. Strictve superstructures in two-dimensional phase transitions. Pis’ma v ZhETF = JETP Letters. 1980, vol. 32, pp. 654—656. (In Russ.).

2. Marchenko V. I. Possible structures and phase transitions to surfaces of crystals. Pis’ma v ZhETF = JETP Letters. 1981, vol. 33, pp. 397—399. (In Russ.).

3. Andreev A. F., Parshin A. Ya. About an equilibrium form and fluctuations of a surface of quantum crystals. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 1978, vol. 75, pp. 1511. (In Russ.).

4. Marchenko V. I., Parshin A. Ya. About elastic properties of a surface of crystals. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 1980, vol. 79, pp. 257. (In Russ.).

5. Marchenko V. I. To the theory of an equilibrium form of crystals. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 1981, vol. 81, pp. 1141. (In Russ.).

6. Andreev A. F., Kosevich Yu. A. The capillary phenomena in the elasticity theory. Zhurnal eksperimental’noi i teoreticheskoi fiziki. 1981, vol. 81, pp. 1435. (In Russ.).

7. Ledentsov N. N., Ustinov V. M., Ivanov S. V., Mel’cer B. Ya., Maksimov M. V., Kop’ev P. S., Bimberg D., Alferov Zh. I. Ordered quantum−dot arrays in semiconducting matrices. Uspekhi fizicheskikh nauk. 1996, vol. 166, no. 4, pp. 423—428. (In Russ.). DOI: 10.3367/UFNr.0166.199604d.0423

8. Ledentsov N. N., Ustinov V. M., Shchukin V. A., Kop’ev P. S., Alferov Zh. I., Bimberg D. Quantum dot heterostructures: fabrication, properties, lasers (review). Fizika i tekhnika poluprovodnikov. 1998, vol. 32, no. 4, pp. 385—410. (In Russ.).

9. Kukushkin, S. A., Osipov A. V. Thin−film condensation processes. Uspekhi fizicheskikh nauk. 1998, vol. 168, no. 10, pp. 1083—1116.

10. (In Russ.). DOI: 10.3367/UFNr.0168.199810b.1083 10. Emel’yanov V. I. Self−organization of the ordered ensembles of nanoparticles at laser operated sedimentation of atoms. Kvantovaya elektronika. 2006, vol. 36, pp. 489—507. (In Russ.).

11. Emel’yanov V. I., Starkov V. V. Nonlinear dynamics of self−organization of hexagonal ensembles of a time at oxidation and pickling of metals and semiconductors. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2006, vol. 36, no. 11, pp. 53—68. (In Russ.).

12. Valance A. Porous sisicon formation: Stability analysis of the silicon−electrolyte interface. Phys. Rev. B. 1995. vol. 52. pp. 8323—8336.

13. Klimov A. V., Grigor’ev A. I. About nonlinear capillary and fluctuation periodic wave movement in a thin film of liquid on a firm substrate. Zhurnal tekhnicheskoi fiziki. 2009, vol. 79, no. 10, pp. 14—21. (In Russ.).

14. Goryachev D. N., Belyakov L. V., Sreseli O. M. Electrolytic fabrication of porous silicon with the use of internal current source. Fizika i tekhnika poluprovodnikov. 2003, vol. 37, no. 4, pp. 494—498. (In Russ.).

15. Tynyshtykbaev K. B., Ryabikin Yu. A., Tokmoldin S. Zh., Aitmukan T., Rakymetov B. A., Vermenichev R. B. Morfologiya of porous silicon at long anode etching in electrolyte with an internal source of current. Pis’ma v zhurnal tekhnicheskoi fiziki. 2010, vol. 36, no. 11, pp. 104—110. (In Russ.).

16. Tynyshtykbaev K. B., Ryabikin Yu. A., Mit’ K. A., Rakymetov B. A., Aitmukan T. Dynamics of formation of the mosaic structure of porous silicon during prolonged anodic etching in electrolytes with an internal current source. Fizika tverdogo tela. 2011, vol. 53, no. 8, pp. 1498—1504. (In Russ.).

17. Belyakov L. V., Goryachev D. N., Sreseli O. M. Role of singlet oxygen in formation of nanoporous silicon. Fizika i tekhnika poluprovodnikov. 2007. vol. 41, iss. 12, pp. 1473—1476. (In Russ.).

18. El’tsov K. N., Karavanskii V. A., Martynov V. V. Modifikation of porous silicon in ultrahigh vacuum and contribution of graphite nanocrystallites to photoluminescence. Pis’ma v ZhETF = JETP Letters. 1996, vol. 63, pp. 106—111. (In Russ.).

19. Deryagin B. V. Teoriya ustoichivosti kolloidov i tonkikh plenok [Teoriya of stability of colloids and thin films]. Moscow: Nauka, 1986. 405 p. (In Russ.).

20. Len’shin A. S., Kashkarov V. M., Turishchev S. Yu., Smirnov M. S., Domashevskaya E. P. Influence of natural aging on a photoluminescence of porous silicon. Pis’ma v zhurnal tekhnicheskoi fiziki. 2011, vol. 37, iss. 17, pp. 1—8. (In Russ.).

21. Pchelyakov O. P., Bolkhovityanov Yu. B., Dvurechenskii A. V., Sokolov L. V., Nikiforov A. I., Yakimov A. I., Foikhtlender B. Silicon−germanium nanostructures with quantum dots: formation mechanisms and electrical properties. Fizika i tekhnika poluprovodnikov. 2000, vol. 34, iss. 11, pp. 1281—1299. (In Russ.).

22. Bolkhovityanov Yu. B., Yudaev V. I., Gutakovsky A. K. The initial stages of heteroepitaxy from the liquid phase at a low misfit: InGaAsP on GaAs. Thin solid films. 1986, vol. 137, pp. 111—121.

23. Timokhov D. F., Timokhov F. P. Influence of crystallographic orientation of silicon on formation of silicon nanoclusters in the course of anode electrochemical etching. Fizika i tekhnika poluprovodnikov. 2009, vol. 43, iss. 1, pp. 95—99. (In Russ.).

24. Eaglesham D. J., White A. E., Feldman L. C., Moriya N., Jacobson D. C. Equilibrium shape of Si. Phys. Rev. Lett. 1993, vol. 70, iss. 11, pp. 1643.

25. Shklyaev A. A., Ichikava M. Extremely dense arrays of germanium and silicon nanostructures. Uspekhi fizicheskikh nauk. 2008, vol. 178, no. 2, pp. 139—169. (In Russ.). DOI: 10.3367/UFNr.0178.200802b.0139

26. Kiselev V. F., Krylov O. V. Elektronnye yavleniya v adsorbtsii i katalize na poluprovodnikakh i dielektrikakh [The electronic phenomena in adsorption and a catalysis on semiconductors and dielectrics]. Moscow: Nauka, 1979. 232 p. (In Russ.).


Review

For citations:


Tynyshtykbayev K.B., Ryabikin Y.A., Tokmoldin S.Z., Rakymetov B.A., Aytmukan T., Abdullin H.A. BOUNDARY PROCESSES IN ELECTROLYTE — SILICON INTERFACE AREA DURING SELF–ORGANIZATION OF MOSAIC STRUCTURE OF 3D–ISLANDS OF POROUS SILICON NANOCRYSTALLITES AT LONG–TERM ANODE ETCHING OF P–SI (100) IN ELECTROLYTE WITH AN INTERNAL SOURCE OF CURRENT. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2014;(1):31-36. (In Russ.) https://doi.org/10.17073/1609-3577-2014-1-31-36

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)