Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering

Advanced search

Metallic Nanofilms on Single Crystal Silicon: Growth, Properties and Applications

https://doi.org/10.17073/1609-3577-2015-2-81-94

Abstract

The metal–silicon thin−film system is not isostructural and furthermore exhibits pronounced interdiffusion and chemical reactions. Therefore the growth of metallic films on silicon leads to a high concentration of defects in the film, especially at its substrate interface. The material also contains stress and a transition layer consisting of melts or compounds (silicides).

We have considered theoretical viewpoints and reviewed experimental data on the growth and properties of metallic nanofilms (including multilayered ones) on silicon, and also provided a brief review of their applications. The films consist either of atomic−sized, quabquantum sized and quantum sized layers. We have suggested a low temperature film growth technology based on freezing growing layers during deposition by maintaining a low temperature of the substrate and using an atomic beam with a reduced heat power. The technology uses a specially shaped deposition system in which the distance between the source and the substrate is comparable to their size or smaller. Furthermore, we use a special time sequence of deposition that provides for a reduced substrate surface temperature due to greater intervals between deposition pulses. This growth method of atomically thin films and multilayered nanofilms excludes interdiffusion between the layers, reduces three−dimensional growth rate and relatively increases lateral layer growth rate.

About the Author

N. I. Plyusnin
Institute of Automation and Control Processes, FEB RAS (IACP)
Russian Federation

Chief Scientific Officer, Associate Professor, Dr. Sci. (Phys.−Math.),

5 Radio Str., Vladivostok 690041



References

1. Likharev K. K. Electronics below 10 nm, In. : Nano and giga challenges in microelectronics. Eds.: Greer J., Korkin A., Labanowski J. Amsterdam: Elsivier, 2003. pp. 27—68

2. Iwai H. Future semiconductor manufacturing−challenges and opportunities, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. IEEE, pp. 1—16

3. Nissim Y. I. and Rosencher E., eds. Heterostructures on Silicon: One Step Further with Silicon, NATO ASI Series E: Applied Science − vol. 160, Kluwer Academic, Dordrecht, 1989.

4. Cressler J.D., ed. The Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained−Layer Epitaxy, New York (NY): CRC Press, 2005. 1210 p.

5. Derrien J., Chevrier J., Le Thanh V., Mahan J. E. Semiconducting silicide−silicon heterostructures: growth, properties and applications, Applied Surface Science, 1992, vol. 56–58, Part 1, pp. 382—393.

6. Jansen R. Silicon spintronics, Nature Materials, 2012, vol. 11, pp. 400—408.

7. Chappert C., Fert A., Van Dau F. N. The emergence of spin electronics in data storage. Nature Materials, 2007, Vol. 6, pp. 813—823.

8. Dash S. P., Sharma S., Patel R. S., de Jong M. P., Jansen R. Electrical creation of spin polarization in silicon at room temperature. Nature, 2009, vol. 462, pp. 491—494.

9. Polman A. Photonic materials: Teaching silicon new tricks. Nature Materials, 2002, vol. 1, no. 1, pp. 10—12.

10. Dai D., Bauters J., Bowers J. E. Passive technologies for future large−scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light: Science & Applications. 2012. vol. 1. no. 3, pp. 1—12.

11. Chen G., Chen H., Haurylau M., Nelson N. A., Albonesi D. H., Fauchet P. M., Friedman E. G. Predictions of CMOS compatible on−chip optical interconnect. integration, the VLSI Journal, 2007, vol. 40, pp. 434—446.

12. Sorger V. J., Oulton R. F., Ma R. M., Zhang, X. Toward integrated plasmonic circuits. MRS bulletin, 2012, vol. 37, no. 8, pp. 728—738.

13. Fert A. and Bruno P. Interlayer Coupling and Magnetoresistance in Multilayers. In: Ultrathin Magnetic Structures II, Berlin Heidelberg: Springer. 1994, pp. 82—189.

14. Parkin S. S. P. Giant Magnetoresistance. Annual Review of Materials Research, 1995, vol. 25. no. 1, pp. 357—388.

15. Nickel J. Magnetoresistance overview. Palo Alto, CA, USA: Hewlett−Packard Laboratories, Technical Publications Department. 1995. p. 11.

16. Hiraki A., Lugujjo E. Low−temperature migration of silicon in metal films on silicon substrates studied by backscattering techniques. Journal of Vacuum Science and Technology, 1972, vol. 9, no. 1, pp. 155—158.

17. Uskov V. A., Erofeeva E. A., Lineva N. A. The low−temperature diffusion of impurities in silicon. In: Legirovanie poluprovodnikov. Moscow: Science, 1982. Pp. 110−114. (In Russ.)

18. Zubarev E .N., Reaction diffusion in nanoscale layered systems of metal/silicon. Uspekhi Phizitcheskih Nauk, 2011, vol. 181, no. 5, pp. 491—520.

19. Aballe L., Rogero C., Kratzer P., Gokhale S., Horn K. Probing interface electronic structure with overlayer quantum−well resonances: Al/Si (111). Physical review letters, 2001, vol. 87, no. 15, pp. 156801 (1—4).

20. Demuth J. E., Koehler U. K., Hamers R. J., Kaplan P. Phase Separation on an Atomic Scale: The Formation of a Novel Quasiperiodic 2D Structure. Physical review letters, 1989, vol. 62, no. 6, pp. 641–644.

21. Gomer R. Approaches to the theory of chemisorption. Accounts of Chemical Research, 1975, vol. 8, no. 12, 420−427. DOI: 10.1021/ar50096a005

22. Chang Y. J., Erskine J. L. Diffusion layers and the Schottky−barrier height in nickel silicide—silicon interfaces. Physical Review B, 1983, vol. 28, no 10, pp. 5766—5773.

23. Brillson L. J. The structure and properties of metal−semiconductor interfaces. Surface Science Reports, 1982, vol. 2, no. 2, pp. 123−326.

24. Bisi O., Tu K. N. Atomic intermixing and electronic interaction at the Pd−Si (111) interface. Physical review letters, 1984, vol. 52, no. 18, pp. 1633—1636.

25. Calandra C., Bisi O., Ottaviani G. Electronic properties on silicon−transition metal interface compounds. Surface Science Reports, 1985, vol. 4, no. 5, pp. 271—364.

26. Hong Z. H., Hwang S. F., Fang T. H. Effect of Substrate Temperature and Incident Energy for Alloyzation of Co onto Cu (001) Substrate. In: Advanced Materials Research, 2008, vols. 47−50, pp. 375—378.

27. Kim S. P., Chung Y. C., Lee S. C., Lee K. R., Lee K. H. Surface alloy formation of Co on Al surface: Molecular dynamics simulation. Journal of applied physics, 2003, vol. 93, no. 10, pp. 8564—8566.

28. Nurminen L., Tavazza F., Landau D. P., Kuronen A., Kaski K. Reconstruction and intermixing in thin Ge layers on Si (001). Physical Review B, 2003, vol. 68, no. 8, pp. 085326 (1—10).

29. Nacer B., Massobrio C., Félix C. Deposition of metallic clusters on a metallic surface at zero initial kinetic energy: Evidence for implantation and site exchanges. Physical Review B, 1997, vol. 56, no. 16, pp. 10590—10595.

30. MacLeod J. M., Cojocaru C. V., Ratto F., Harnagea C., Bernardi A., Alonso M. I., Rosei F. Modified Stranski–Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition. Nanotechnology, 2012, vol. 23, no. 6, pp. 065603 (1—9).

31. Plusnin N. I., Milenin A. P., Iliyashenko B. M., Lifshits V. G., Elevated rate growth of nanolayers of Cr and CrSi2 on Si(111), Physics of Low−Dimensional Structures, 2002, no. 9/10, pp. 129—146.

32. Plusnin N. I., Iliyashenko B. M., Milenin A. P. The growth and conductivity of transition metal nanolayers on silicon, Physics of Low−Dimensional Structures, 2002, no. 11/12, pp. 39—48.

33. Pat. 2486279 (RF). Sposob formirovaniya ul’tratonkoi plenki [A method of forming an ultra−thin film] / N. I. Plusnin, 2013.

34. Zhang Z., Lagally M. G. Atomistic processes in the early stages of thin−film growth. Science, 1997, vol. 276, no. 5311, pp. 377—383. DOI: 10.1126/science.276.5311.377

35. Plusnin N. I., Il’yashenko V. M., Kitan S. A., Krylov S. V. Formation of Co ultrathin films on Si (111): Growth mechanisms, electronic structure and transport. Applied surface science, 2007, vol. 253, no. 17, pp. 7225—7229.

36. Plusnin N. I., Iliyashenko V. M., Kitan’ S. A, Krylov S. V., Tarima N. A., Pisarev R. V., Pavlov V. V. Optical and magnetic properties of atomically thin Fe film on Si(001). Proc. of 17th Int. Symp. Nanostructures: Physics and Technology. St. Peterburg: Ioffe Institute, 2009. pp. 200—201.

37. Fert A. Nobel lecture: Origin, development, and future of spintronics. Reviews of Modern Physics, 2008, vol. 80, no. 4, pp. 1517—1530.

38. Wadley H. N., Zhou X., Johnson R. A. Atomic assembly of giant magnetoresistive multilayers. In Mat. Res. Soc. Symp. Proc., Cambridge: Cambridge University Press. 2001, vol. 672, pp. O4.1.1—O4.1.14.

39. Plyusnin N. I., Il’yashchenko V. M., Kitan’ S. A., Tarima N. A. Structural and phase transformations during initial stages of copper condensation on Si(001). Journal of Surface Investigation: X−Ray, Synchrotron and Neutron Techniques. 2011, vol. 5, no 4, pp. 734—745. DOI: 10.1134/S1027451011060140

40. Plyusnin N. I., Il’yashchenko V. M., Usachev P. A., Pavlov V. V. Growth and structural and magnetic properties of multilayer Fe, Co, and Cu nanofilms on silicon. Zhurnal tekhnicheskoi fiziki = Technical Physics. 2015, vol. 85, no. 10, pp. 87—93. (In Russ.)

41. Nakatsuka O., Suzuki A., Sakai A., Ogawa M., Zaima S. Electrical properties of epitaxial NiSi2/Si contacts with extremely flat interface formed in Ni/Ti/Si (001) system. Microelectronic engineering, 2006, vol. 83, no. 11, pp. 2272−2276.

42. Jang M., Kim Y., Jun M., Lee S. Characteristics of Schottky Diode and Schottky Barrier Metal−Oxide−Semiconductor Field−Effect Transistors. Journal of Semiconductor Technology and Science, 2005, vol. 5, no. 2, pp. 69—76.

43. Weber W. M., Geelhaar L., Graham A. P., Unger E., Duesberg G. S., Liebau M., Pamler W., Che`ze C., Riechert H., Lugli P., Kreupl F. Silicon−nanowire transistors with intruded nickel−silicide contacts. Nano letters, 2006, vol. 6, no. 12, pp. 2660—2666.

44. Landman U., Barnett R. N., Scherbakov A. G., Avouris P. Metal−semiconductor nanocontacts: Silicon nanowires. Physical Review Letters, 2000, vol. 85, no. 9, pp. 1958—1961.

45. Jansen R. The spin−valve transistor: a review and outlook. J. Phys. D: Appl. Phys., 2003, vol. 36, no. 19, pp. R289—R308.

46. Monsma D. J., Vlutters R., Shimatsu T., Keim E. G., Mollema R. H., Lodder J. C. Development of the spin−valve transistor, IEEE Transactions on Magnetics, 1997, vol. 33, no. 5, pp. 3495—3499.

47. Kimura T., Hamrle J., Otani Y., Tsukagoshi K., Aoyagi Y. Spin−dependent boundary resistance in the lateral spin−valve structure. Applied physics letters, 2004, vol. 85, no. 16, pp. 3501—3503.

48. Xiao M., Martin I., Yablonovitch E., Jiang H. W. Electrical detection of the spin resonance of a single electron in a silicon field−effect transistor. Nature, 2004, vol. 430, no. 22, pp. 435—439.

49. De Boeck J., Van Roy W., Motsnyi V., Liu Z., Dessein K., Borghs G. Hybrid epitaxial structures for spintronics. Thin Solid Films, 2002, vol. 412, no. 1, pp. 3—13.

50. Wu Y. Nano spintronics for data storage. Encyclopedia of nanoscience and nanotechnology. Ed. Nalwa H. S., Valencia: American Scientific Publishers, USA, 2004, vol. X, pp. 1—50.

51. Zhu S., Lo G. Q., Kwong D. L. CMOS−Compatible Silicon Nanoplasmonics for On−Chip Integration. World Academy of Science, Engineering and Technology, 2012, vol. 6, no. 9, pp. 486—492.

52. Temnov V. V., Armelles G., Woggon U., Guzatov D., Cebollada A., Garcia−Martin A., Garcia−Martin J.−M., Thomay T., Leitenstorfer A., Bratschitsch R. (2010). Active magneto−plasmonics in hybrid metal–ferromagnet structures. Nature Photonics, 4(2), 107—111.

53. Plusnin N. I., Il’iashchenko V. M., Kitan’ S.A., Krylov S. V. Metal thin−film nanophases and their interface with silicon. Journal of Physics: Conference Series, 2008, vol. 100, no. 5, pp. 052094 (1−4).


Review

For citations:


Plyusnin N.I. Metallic Nanofilms on Single Crystal Silicon: Growth, Properties and Applications. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2015;18(2):81-94. (In Russ.) https://doi.org/10.17073/1609-3577-2015-2-81-94

Views: 1012


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1609-3577 (Print)
ISSN 2413-6387 (Online)